Avoiding monotone arithmetic progressions in permutations of integers

Pub Date : 2024-07-30 DOI:10.1016/j.disc.2024.114183
Sarosh Adenwalla
{"title":"Avoiding monotone arithmetic progressions in permutations of integers","authors":"Sarosh Adenwalla","doi":"10.1016/j.disc.2024.114183","DOIUrl":null,"url":null,"abstract":"<div><p>A permutation of the integers avoiding monotone arithmetic progressions of length 6 was constructed in (Geneson, 2018). We improve on this by constructing a permutation of the integers avoiding monotone arithmetic progressions of length 5. We also construct permutations of the integers and the positive integers that improve on previous upper and lower density results. In (Davis et al. 1977) they constructed a doubly infinite permutation of the positive integers that avoids monotone arithmetic progressions of length 4. We construct a doubly infinite permutation of the integers avoiding monotone arithmetic progressions of length 5. A permutation of the positive integers that avoided monotone arithmetic progressions of length 4 with odd common difference was constructed in (LeSaulnier and Vijay, 2011). We generalise this result and show that for each <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>, there exists a permutation of the positive integers that avoids monotone arithmetic progressions of length 4 with common difference not divisible by <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msup></math></span>. In addition, we specify the structure of permutations of <span><math><mo>[</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>]</mo></math></span> that avoid length 3 monotone arithmetic progressions mod <em>n</em> as defined in (Davis et al. 1977) and provide an explicit construction for a multiplicative result on permutations that avoid length <em>k</em> monotone arithmetic progressions mod <em>n</em>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003145/pdfft?md5=8d8c7e64880fe3b6fb3a3eb024d87635&pid=1-s2.0-S0012365X24003145-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A permutation of the integers avoiding monotone arithmetic progressions of length 6 was constructed in (Geneson, 2018). We improve on this by constructing a permutation of the integers avoiding monotone arithmetic progressions of length 5. We also construct permutations of the integers and the positive integers that improve on previous upper and lower density results. In (Davis et al. 1977) they constructed a doubly infinite permutation of the positive integers that avoids monotone arithmetic progressions of length 4. We construct a doubly infinite permutation of the integers avoiding monotone arithmetic progressions of length 5. A permutation of the positive integers that avoided monotone arithmetic progressions of length 4 with odd common difference was constructed in (LeSaulnier and Vijay, 2011). We generalise this result and show that for each k1, there exists a permutation of the positive integers that avoids monotone arithmetic progressions of length 4 with common difference not divisible by 2k. In addition, we specify the structure of permutations of [1,n] that avoid length 3 monotone arithmetic progressions mod n as defined in (Davis et al. 1977) and provide an explicit construction for a multiplicative result on permutations that avoid length k monotone arithmetic progressions mod n.

分享
查看原文
避免整数排列中的单调算术级数
Geneson, 2018)中构建了一种避免长度为 6 的单调算术级数的整数排列。我们还构造了整数和正整数的排列,改进了之前的上密度和下密度结果。戴维斯等人,1977)构建了一个避免长度为 4 的单调算术级数的正整数双倍无限排列。我们对这一结果进行了概括,并证明对于每个 ,都存在一种正整数的置换,它能避免长度为 4 且公差不能被 除的单调算术级数。此外,我们还说明了避免长度为 3 的单调算术级数 mod 的排列结构,如(戴维斯等人,1977 年)所定义,并提供了避免长度为 mod 的单调算术级数的排列的乘法结果的明确构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信