{"title":"Smart agriculture: An intelligent approach for apple leaf disease identification based on convolutional neural network","authors":"Jiangong Ni","doi":"10.1111/jph.13374","DOIUrl":null,"url":null,"abstract":"<p>Plant diseases pose a significant threat to global agricultural productivity and food safety. Early detection and accurate identification of these diseases are essential for effective disease management strategies. Traditional plant disease identification mainly relies on manual observation and experienced expert judgement, which has the disadvantages of being time-consuming, labour-intensive and low efficiency. Given the above problems, this study proposes a method for identifying apple leaf diseases based on a convolutional neural network combining hybrid attention and bidirectional long short-term memory (BiLSTM). Appropriate apple leaf disease samples were selected from multiple public data sets to form an experimental data set. Then, the data set is imported into the improved convolutional neural network for training. Based on the original ResNet18 model, a new convolutional neural network, AppleNet, is constructed by adding a hybrid attention module and modifying the classifier structure. The experimental results show that the average recognition accuracy of AppleNet is 94.66%, which is 2.47% higher than that of the ResNet18 network. In addition, the training time of the model is only slightly increased. The ablation experiment further verified the effectiveness of the model modification. Compared with other advanced models in recognition accuracy and model training time, the superiority of AppleNet is confirmed. This study verifies that deep learning has great potential and application prospects in plant disease identification and provides a new technical solution for intelligent and convenient plant disease identification.</p>","PeriodicalId":16843,"journal":{"name":"Journal of Phytopathology","volume":"172 4","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jph.13374","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plant diseases pose a significant threat to global agricultural productivity and food safety. Early detection and accurate identification of these diseases are essential for effective disease management strategies. Traditional plant disease identification mainly relies on manual observation and experienced expert judgement, which has the disadvantages of being time-consuming, labour-intensive and low efficiency. Given the above problems, this study proposes a method for identifying apple leaf diseases based on a convolutional neural network combining hybrid attention and bidirectional long short-term memory (BiLSTM). Appropriate apple leaf disease samples were selected from multiple public data sets to form an experimental data set. Then, the data set is imported into the improved convolutional neural network for training. Based on the original ResNet18 model, a new convolutional neural network, AppleNet, is constructed by adding a hybrid attention module and modifying the classifier structure. The experimental results show that the average recognition accuracy of AppleNet is 94.66%, which is 2.47% higher than that of the ResNet18 network. In addition, the training time of the model is only slightly increased. The ablation experiment further verified the effectiveness of the model modification. Compared with other advanced models in recognition accuracy and model training time, the superiority of AppleNet is confirmed. This study verifies that deep learning has great potential and application prospects in plant disease identification and provides a new technical solution for intelligent and convenient plant disease identification.
期刊介绍:
Journal of Phytopathology publishes original and review articles on all scientific aspects of applied phytopathology in agricultural and horticultural crops. Preference is given to contributions improving our understanding of the biotic and abiotic determinants of plant diseases, including epidemics and damage potential, as a basis for innovative disease management, modelling and forecasting. This includes practical aspects and the development of methods for disease diagnosis as well as infection bioassays.
Studies at the population, organism, physiological, biochemical and molecular genetic level are welcome. The journal scope comprises the pathology and epidemiology of plant diseases caused by microbial pathogens, viruses and nematodes.
Accepted papers should advance our conceptual knowledge of plant diseases, rather than presenting descriptive or screening data unrelated to phytopathological mechanisms or functions. Results from unrepeated experimental conditions or data with no or inappropriate statistical processing will not be considered. Authors are encouraged to look at past issues to ensure adherence to the standards of the journal.