Influence of protein addition in plant-based cheese

IF 4.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Cameryn Sanders, Stacie Dobson, Alejandro G. Marangoni
{"title":"Influence of protein addition in plant-based cheese","authors":"Cameryn Sanders, Stacie Dobson, Alejandro G. Marangoni","doi":"10.1557/s43577-024-00737-2","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Plant-based cheese alternatives often demonstrate poor melt, stretch, texture, and nutritional value. Dairy cheese has a complex structure of fats and caseins, which has proved challenging to replicate using plant ingredients. In this study, the functional characteristics of starch-structured plant-based cheeses were evaluated as a function of increasing protein contents up to 10% w/w, to determine if protein addition was beneficial to cheese functionality. Any addition of protein to the starch matrix increased melt, decreased oil loss, and increased hardness. Thermo-rheological and thermo-mechanical parameters of the cheeses were determined and correlated to the improved functionality. The relative decrease in the storage modulus (G′) from 40°C to 95°C was strongly correlated to the observed increase in melt. This study suggests that there is potential for the improvement in the functionality and performance of plant-based cheese alternatives by protein addition, while also enhancing their nutritional profile.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3><h3 data-test=\"abstract-sub-heading\">Impact Statement</h3><p>With changing environmental and sustainability demands, as well as dietary preferences, there is an opportunity to close the gap between dairy and plant-based cheeses. Based on the target cost, functionality, and nutritional value, the protein content of plant-based cheeses can be modified so that the functional, textural, and nutritional properties can meet consumer expectations. With an increased understanding of the broader textural properties of plant-based cheeses, we can better engineer the formulations for various food applications. Existing manufacturing equipment and processes can be used to improve sustainability, while the formulations can be altered to create a more desirable product. In this letter, we show that it should not be an expectation to settle for plant-based alternatives that underperform, as there is potential to greatly improve this sector.</p>","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mrs Bulletin","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43577-024-00737-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Plant-based cheese alternatives often demonstrate poor melt, stretch, texture, and nutritional value. Dairy cheese has a complex structure of fats and caseins, which has proved challenging to replicate using plant ingredients. In this study, the functional characteristics of starch-structured plant-based cheeses were evaluated as a function of increasing protein contents up to 10% w/w, to determine if protein addition was beneficial to cheese functionality. Any addition of protein to the starch matrix increased melt, decreased oil loss, and increased hardness. Thermo-rheological and thermo-mechanical parameters of the cheeses were determined and correlated to the improved functionality. The relative decrease in the storage modulus (G′) from 40°C to 95°C was strongly correlated to the observed increase in melt. This study suggests that there is potential for the improvement in the functionality and performance of plant-based cheese alternatives by protein addition, while also enhancing their nutritional profile.

Graphical abstract

Impact Statement

With changing environmental and sustainability demands, as well as dietary preferences, there is an opportunity to close the gap between dairy and plant-based cheeses. Based on the target cost, functionality, and nutritional value, the protein content of plant-based cheeses can be modified so that the functional, textural, and nutritional properties can meet consumer expectations. With an increased understanding of the broader textural properties of plant-based cheeses, we can better engineer the formulations for various food applications. Existing manufacturing equipment and processes can be used to improve sustainability, while the formulations can be altered to create a more desirable product. In this letter, we show that it should not be an expectation to settle for plant-based alternatives that underperform, as there is potential to greatly improve this sector.

Abstract Image

添加蛋白质对植物奶酪的影响
摘要以植物为原料的奶酪替代品通常在融化、拉伸、质地和营养价值方面表现不佳。乳制品奶酪具有复杂的脂肪和酪蛋白结构,使用植物配料复制这种结构具有挑战性。在这项研究中,我们评估了淀粉结构植物奶酪的功能特性与蛋白质含量增加(最高达 10%w/w)的函数关系,以确定蛋白质的添加是否有利于奶酪的功能。在淀粉基质中添加任何蛋白质都会增加熔融性、减少油脂流失并提高硬度。测定了奶酪的热流变和热机械参数,并将这些参数与奶酪功能的改善联系起来。储藏模量(G′)从 40°C 到 95°C 的相对下降与观察到的熔体增加密切相关。这项研究表明,通过添加蛋白质来改善植物基奶酪替代品的功能和性能是有潜力的,同时还能提高它们的营养成分。 图解摘要影响声明随着环境和可持续性需求以及饮食偏好的不断变化,有机会缩小乳制品和植物基奶酪之间的差距。根据目标成本、功能性和营养价值,可以改变植物性奶酪的蛋白质含量,从而使其功能、质地和营养特性满足消费者的期望。随着对植物性奶酪更广泛的质地特性了解的加深,我们可以更好地为各种食品应用设计配方。我们可以利用现有的生产设备和工艺来提高可持续性,同时改变配方以生产出更受欢迎的产品。在这封信中,我们表明不应该满足于性能不佳的植物基替代品,因为这个领域有极大的改进潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mrs Bulletin
Mrs Bulletin 工程技术-材料科学:综合
CiteScore
7.40
自引率
2.00%
发文量
193
审稿时长
4-8 weeks
期刊介绍: MRS Bulletin is one of the most widely recognized and highly respected publications in advanced materials research. Each month, the Bulletin provides a comprehensive overview of a specific materials theme, along with industry and policy developments, and MRS and materials-community news and events. Written by leading experts, the overview articles are useful references for specialists, but are also presented at a level understandable to a broad scientific audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信