On finite models of Hilbert's incidence geometry

Pub Date : 2024-07-22 DOI:10.1016/j.disc.2024.114159
Kristina Ago, Bojan Bašić, Milica Maksimović, Milica Šobot
{"title":"On finite models of Hilbert's incidence geometry","authors":"Kristina Ago,&nbsp;Bojan Bašić,&nbsp;Milica Maksimović,&nbsp;Milica Šobot","doi":"10.1016/j.disc.2024.114159","DOIUrl":null,"url":null,"abstract":"<div><p>We consider finite models of the first group of Hilbert's axioms of the Euclidean geometry (the so-called axioms of incidence). We give a lower bound on the number of such models with <em>n</em> points, and we calculate their exact number for <em>n</em> up to 12.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24002905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider finite models of the first group of Hilbert's axioms of the Euclidean geometry (the so-called axioms of incidence). We give a lower bound on the number of such models with n points, and we calculate their exact number for n up to 12.

分享
查看原文
论希尔伯特入射几何的有限模型
我们考虑欧几里得几何希尔伯特公理第一组的有限模型(即所谓的入射公理)。我们给出了带有点的此类模型数量的下限,并计算了最多 12 个模型的精确数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信