{"title":"Dominant duct azimuthal acoustic mode detection considering failed wall-installed microphones with amplitude or phase measurement biases","authors":"Chenyu Zhang , Huiping Huang , Qiannan Xu , Youhong Xiao , Liang Yu , Kang Gao , Weikang Jiang","doi":"10.1016/j.apacoust.2024.110201","DOIUrl":null,"url":null,"abstract":"<div><p>Reliable duct mode detection results are essential for aero-engine health condition monitoring and low-noise design. Harsh aero-engine measurement environments may cause biases in amplitude and phase measurements due to the failure of wall-mounted microphones, which will decrease the performance of advanced sparse representation algorithms for duct mode detection. In this paper, two strategies to detect the duct mode with the failed microphones are proposed. An optimization problem is constructed considering the low-rankness of theoretical array measurement and row-sparsity of the failed microphone measurements. The <strong>Strategy 1</strong> is based on the recovery of the theoretical array measurement. The recovered array measurement can be further used to detect the duct mode via the sparsity-induced duct mode detection algorithm (generalized minimax-concave penalty in this paper). With the simulation, the <strong>Strategy 1</strong> can not recover the theoretical array measurement completely. The <strong>Strategy 2</strong> is based on the removal of the failed microphone measurements. With the simulation and experiment, it turns out that the <strong>Strategy 2</strong> can detect the interested mode accurately.</p></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X24003529","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Reliable duct mode detection results are essential for aero-engine health condition monitoring and low-noise design. Harsh aero-engine measurement environments may cause biases in amplitude and phase measurements due to the failure of wall-mounted microphones, which will decrease the performance of advanced sparse representation algorithms for duct mode detection. In this paper, two strategies to detect the duct mode with the failed microphones are proposed. An optimization problem is constructed considering the low-rankness of theoretical array measurement and row-sparsity of the failed microphone measurements. The Strategy 1 is based on the recovery of the theoretical array measurement. The recovered array measurement can be further used to detect the duct mode via the sparsity-induced duct mode detection algorithm (generalized minimax-concave penalty in this paper). With the simulation, the Strategy 1 can not recover the theoretical array measurement completely. The Strategy 2 is based on the removal of the failed microphone measurements. With the simulation and experiment, it turns out that the Strategy 2 can detect the interested mode accurately.
期刊介绍:
Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense.
Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems.
Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.