{"title":"Performance of micro-perforated muffler with flexible back cavity for water filled pipelines","authors":"YUAN Suwei, HOU Jiuxiao, ZHU Haichao","doi":"10.1016/j.apacoust.2024.110192","DOIUrl":null,"url":null,"abstract":"<div><p>In order to reduce the low frequency noise of water filled pipelines, a micro-perforated muffler with composite structure flexible back cavity is proposed. The sound pressure and the displacement are expanded into three or two-dimensional Chebyshev series forms respectively. A numerical model, based on Hamilton’s principle of minimum potential energy and Rayley-Ritz method, is proposed for the accurate prediction of sound pressure and transmission loss. The results show that the noise attenuation bandwidth can be widened by selecting the proper length of internal intubation. In a certain range, the peak frequency of transmission loss moves to low frequency by increasing the perforation diameter and the thickness of the MPP or reducing the perforation rate. By reducing the laying angle or the number of layers of the flexible wall, the lower peak frequency and lowest muffling frequency of transmission loss can be obtained. The transmission loss has a sudden change at the axial mode frequency, which results in peaks and dips. Finally, the experimental research is carried out to verify the theory of this paper.</p></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X24003438","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In order to reduce the low frequency noise of water filled pipelines, a micro-perforated muffler with composite structure flexible back cavity is proposed. The sound pressure and the displacement are expanded into three or two-dimensional Chebyshev series forms respectively. A numerical model, based on Hamilton’s principle of minimum potential energy and Rayley-Ritz method, is proposed for the accurate prediction of sound pressure and transmission loss. The results show that the noise attenuation bandwidth can be widened by selecting the proper length of internal intubation. In a certain range, the peak frequency of transmission loss moves to low frequency by increasing the perforation diameter and the thickness of the MPP or reducing the perforation rate. By reducing the laying angle or the number of layers of the flexible wall, the lower peak frequency and lowest muffling frequency of transmission loss can be obtained. The transmission loss has a sudden change at the axial mode frequency, which results in peaks and dips. Finally, the experimental research is carried out to verify the theory of this paper.
期刊介绍:
Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense.
Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems.
Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.