Hubbard Model on a Triangular Lattice at Finite Temperatures

IF 1.1 3区 物理与天体物理 Q4 PHYSICS, APPLIED
Alexei Sherman
{"title":"Hubbard Model on a Triangular Lattice at Finite Temperatures","authors":"Alexei Sherman","doi":"10.1007/s10909-024-03194-y","DOIUrl":null,"url":null,"abstract":"<p>Using the strong coupling diagram technique, we find three phases of the half-filled isotropic Hubbard model on a triangular lattice at finite temperatures. The weak-interaction (<span>\\(U\\lesssim 5t\\)</span>) and strong-interaction (<span>\\(U\\gtrsim 9t\\)</span>) phases are similar to those obtained by zero-temperature methods—the former is a metal without perceptible spin excitations; the latter is a Mott insulator with the 120<span>\\(^\\circ\\)</span> short-range spin ordering. Zero-temperature approaches predict a nonmagnetic insulating spin-liquid phase sandwiched between these two regions. In our finite-temperature calculations, the Mott gap in the intermediate phase is filled by the Fermi-level peak, which is a manifestation of the bound states of electrons with pronounced spin excitations. We relate the appearance of these excitations at finite temperatures to the Pomeranchuk effect.</p>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s10909-024-03194-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Using the strong coupling diagram technique, we find three phases of the half-filled isotropic Hubbard model on a triangular lattice at finite temperatures. The weak-interaction (\(U\lesssim 5t\)) and strong-interaction (\(U\gtrsim 9t\)) phases are similar to those obtained by zero-temperature methods—the former is a metal without perceptible spin excitations; the latter is a Mott insulator with the 120\(^\circ\) short-range spin ordering. Zero-temperature approaches predict a nonmagnetic insulating spin-liquid phase sandwiched between these two regions. In our finite-temperature calculations, the Mott gap in the intermediate phase is filled by the Fermi-level peak, which is a manifestation of the bound states of electrons with pronounced spin excitations. We relate the appearance of these excitations at finite temperatures to the Pomeranchuk effect.

Abstract Image

有限温度下三角形晶格上的哈伯德模型
利用强耦合图技术,我们发现了有限温度下三角形晶格上半填充各向同性哈伯德模型的三个阶段。弱相互作用(\(U\lesssim 5t\))和强相互作用(\(U\gtrsim 9t\))相与零温方法得到的相类似--前者是没有可感知自旋激发的金属;后者是具有120\(^\circ\)短程自旋有序的莫特绝缘体。零温方法预测了夹在这两个区域之间的非磁性绝缘自旋液相。在我们的有限温度计算中,中间相的莫特缺口被费米级峰填满,费米级峰是具有明显自旋激发的电子束缚态的一种表现形式。我们将这些激发在有限温度下的出现与波美兰丘克效应联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Low Temperature Physics
Journal of Low Temperature Physics 物理-物理:凝聚态物理
CiteScore
3.30
自引率
25.00%
发文量
245
审稿时长
1 months
期刊介绍: The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信