Integrating autoencoder with Koopman operator to design a linear data‐driven model predictive controller

Xiaonian Wang, Sheel Ayachi, Brandon Corbett, Prashant Mhaskar
{"title":"Integrating autoencoder with Koopman operator to design a linear data‐driven model predictive controller","authors":"Xiaonian Wang, Sheel Ayachi, Brandon Corbett, Prashant Mhaskar","doi":"10.1002/cjce.25445","DOIUrl":null,"url":null,"abstract":"Non‐linear model predictive control (NMPC) is increasingly seen as a promising tool to tackle the problem of handling process nonlinearity and achieve optimal operation. One roadblock to NMPC implementation, however, is the lack of a good model, whether a first‐principles‐based or a non‐linear data‐driven‐based model such as artificial neural networks (ANN). This manuscript proposes a data‐driven modelling approach that integrates an autoencoder‐like network and dynamic mode decomposition (DMD) methods to result in a non‐linear modelling technique where the non‐linearity in the model stems from the modelling of the measured variables. The proposed method results in a semi‐linear state‐space model where the mapping between the model state and outputs are non‐linear (via the autoencoder‐like network) while the model dynamics are linear. In the subsequent model predictive controller (MPC) implementation, the autoencoder translates setpoints and outputs to the states of a state space model. The proposed approach is illustrated using a continuously stirred tank reactor simulation example. For comparison, a linear MPC and non‐linear MPC based on a traditional neural network (NN) model, a classic Koopman operator‐based MPC, and (to benchmark) a perfect model‐based NMPC are implemented and tested on several setpoint tracking tasks. The proposed MPC design outperforms the other data driven MPCs, and has similar performance as the first‐principles‐based NMPC while requiring less computational time and without requiring first principles knowledge.","PeriodicalId":501204,"journal":{"name":"The Canadian Journal of Chemical Engineering","volume":"128 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Canadian Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cjce.25445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Non‐linear model predictive control (NMPC) is increasingly seen as a promising tool to tackle the problem of handling process nonlinearity and achieve optimal operation. One roadblock to NMPC implementation, however, is the lack of a good model, whether a first‐principles‐based or a non‐linear data‐driven‐based model such as artificial neural networks (ANN). This manuscript proposes a data‐driven modelling approach that integrates an autoencoder‐like network and dynamic mode decomposition (DMD) methods to result in a non‐linear modelling technique where the non‐linearity in the model stems from the modelling of the measured variables. The proposed method results in a semi‐linear state‐space model where the mapping between the model state and outputs are non‐linear (via the autoencoder‐like network) while the model dynamics are linear. In the subsequent model predictive controller (MPC) implementation, the autoencoder translates setpoints and outputs to the states of a state space model. The proposed approach is illustrated using a continuously stirred tank reactor simulation example. For comparison, a linear MPC and non‐linear MPC based on a traditional neural network (NN) model, a classic Koopman operator‐based MPC, and (to benchmark) a perfect model‐based NMPC are implemented and tested on several setpoint tracking tasks. The proposed MPC design outperforms the other data driven MPCs, and has similar performance as the first‐principles‐based NMPC while requiring less computational time and without requiring first principles knowledge.
整合自动编码器和库普曼算子,设计线性数据驱动模型预测控制器
非线性模型预测控制 (NMPC) 越来越被视为解决处理流程非线性问题和实现最佳运行的一种有前途的工具。然而,实施 NMPC 的一个障碍是缺乏一个好的模型,无论是基于第一原理的模型,还是基于非线性数据驱动的模型,如人工神经网络 (ANN)。本手稿提出了一种数据驱动建模方法,该方法集成了类似自动编码器的网络和动态模式分解(DMD)方法,从而产生了一种非线性建模技术,模型中的非线性源于测量变量的建模。所提议的方法产生了一个半线性状态空间模型,其中模型状态和输出之间的映射是非线性的(通过类自编码器网络),而模型动态是线性的。在随后的模型预测控制器(MPC)实施中,自动编码器将设定点和输出转换为状态空间模型的状态。我们使用一个连续搅拌罐反应器仿真实例对所提出的方法进行了说明。为了进行比较,我们实施了基于传统神经网络 (NN) 模型的线性 MPC 和非线性 MPC、基于经典 Koopman 算子的 MPC 以及(作为基准)基于完美模型的 NMPC,并在多个设定点跟踪任务中进行了测试。所提出的 MPC 设计优于其他数据驱动型 MPC,其性能与基于第一原理的 NMPC 相似,但所需计算时间更短,且无需第一原理知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信