{"title":"Integrating autoencoder with Koopman operator to design a linear data-driven model predictive controller","authors":"Xiaonian Wang, Sheel Ayachi, Brandon Corbett, Prashant Mhaskar","doi":"10.1002/cjce.25445","DOIUrl":null,"url":null,"abstract":"<p>Non-linear model predictive control (NMPC) is increasingly seen as a promising tool to tackle the problem of handling process nonlinearity and achieve optimal operation. One roadblock to NMPC implementation, however, is the lack of a good model, whether a first-principles-based or a non-linear data-driven-based model such as artificial neural networks (ANN). This manuscript proposes a data-driven modelling approach that integrates an autoencoder-like network and dynamic mode decomposition (DMD) methods to result in a non-linear modelling technique where the non-linearity in the model stems from the modelling of the measured variables. The proposed method results in a semi-linear state-space model where the mapping between the model state and outputs are non-linear (via the autoencoder-like network) while the model dynamics are linear. In the subsequent model predictive controller (MPC) implementation, the autoencoder translates setpoints and outputs to the states of a state space model. The proposed approach is illustrated using a continuously stirred tank reactor simulation example. For comparison, a linear MPC and non-linear MPC based on a traditional neural network (NN) model, a classic Koopman operator-based MPC, and (to benchmark) a perfect model-based NMPC are implemented and tested on several setpoint tracking tasks. The proposed MPC design outperforms the other data driven MPCs, and has similar performance as the first-principles-based NMPC while requiring less computational time and without requiring first principles knowledge.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":"103 3","pages":"1099-1111"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjce.25445","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25445","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Non-linear model predictive control (NMPC) is increasingly seen as a promising tool to tackle the problem of handling process nonlinearity and achieve optimal operation. One roadblock to NMPC implementation, however, is the lack of a good model, whether a first-principles-based or a non-linear data-driven-based model such as artificial neural networks (ANN). This manuscript proposes a data-driven modelling approach that integrates an autoencoder-like network and dynamic mode decomposition (DMD) methods to result in a non-linear modelling technique where the non-linearity in the model stems from the modelling of the measured variables. The proposed method results in a semi-linear state-space model where the mapping between the model state and outputs are non-linear (via the autoencoder-like network) while the model dynamics are linear. In the subsequent model predictive controller (MPC) implementation, the autoencoder translates setpoints and outputs to the states of a state space model. The proposed approach is illustrated using a continuously stirred tank reactor simulation example. For comparison, a linear MPC and non-linear MPC based on a traditional neural network (NN) model, a classic Koopman operator-based MPC, and (to benchmark) a perfect model-based NMPC are implemented and tested on several setpoint tracking tasks. The proposed MPC design outperforms the other data driven MPCs, and has similar performance as the first-principles-based NMPC while requiring less computational time and without requiring first principles knowledge.
期刊介绍:
The Canadian Journal of Chemical Engineering (CJChE) publishes original research articles, new theoretical interpretation or experimental findings and critical reviews in the science or industrial practice of chemical and biochemical processes. Preference is given to papers having a clearly indicated scope and applicability in any of the following areas: Fluid mechanics, heat and mass transfer, multiphase flows, separations processes, thermodynamics, process systems engineering, reactors and reaction kinetics, catalysis, interfacial phenomena, electrochemical phenomena, bioengineering, minerals processing and natural products and environmental and energy engineering. Papers that merely describe or present a conventional or routine analysis of existing processes will not be considered.