Melatonin-loaded bioactive microspheres accelerate aged bone regeneration by formation of tunneling nanotubes to enhance mitochondrial transfer

IF 8.7 1区 医学 Q1 ENGINEERING, BIOMEDICAL
{"title":"Melatonin-loaded bioactive microspheres accelerate aged bone regeneration by formation of tunneling nanotubes to enhance mitochondrial transfer","authors":"","doi":"10.1016/j.mtbio.2024.101175","DOIUrl":null,"url":null,"abstract":"<div><p>The repair of bone defects in the elderly individuals is significantly delayed due to cellular senescence and dysfunction, which presents a challenge in clinical settings. Furthermore, there are limited effective methods available to promote bone repair in older individuals. Herein, melatonin-loaded mesoporous bioactive glasses microspheres (MTBG) were successfully prepared based on their mesoporous properties. The repair of bone defects in aged rats was significantly accelerated by enhancing mitochondrial function through the sustained release of melatonin and bioactive ions. MTBG effectively rejuvenated senescent bone marrow mesenchymal stem cells (BMSCs) by scavenging excessive reactive oxygen species (ROS), stabilizing the mitochondrial membrane potential (ΔΨm), and increasing ATP synthesis. Analysis of the underlying mechanism revealed that the formation of tunneling nanotubes (TNTs) facilitated the intercellular transfer of mitochondria, thereby resulting in the recovery of mitochondrial function. This study provides critical insights into the design of new biomaterials for the elderly individuals and the biological mechanism involved in aged bone regeneration.</p></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590006424002369/pdfft?md5=585ec9eaeeadaf6c8442f58a29385384&pid=1-s2.0-S2590006424002369-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006424002369","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The repair of bone defects in the elderly individuals is significantly delayed due to cellular senescence and dysfunction, which presents a challenge in clinical settings. Furthermore, there are limited effective methods available to promote bone repair in older individuals. Herein, melatonin-loaded mesoporous bioactive glasses microspheres (MTBG) were successfully prepared based on their mesoporous properties. The repair of bone defects in aged rats was significantly accelerated by enhancing mitochondrial function through the sustained release of melatonin and bioactive ions. MTBG effectively rejuvenated senescent bone marrow mesenchymal stem cells (BMSCs) by scavenging excessive reactive oxygen species (ROS), stabilizing the mitochondrial membrane potential (ΔΨm), and increasing ATP synthesis. Analysis of the underlying mechanism revealed that the formation of tunneling nanotubes (TNTs) facilitated the intercellular transfer of mitochondria, thereby resulting in the recovery of mitochondrial function. This study provides critical insights into the design of new biomaterials for the elderly individuals and the biological mechanism involved in aged bone regeneration.

Abstract Image

褪黑素生物活性微球通过形成隧道纳米管来促进线粒体转移,从而加速老化骨再生
由于细胞衰老和功能障碍,老年人骨缺损的修复明显延迟,这给临床治疗带来了挑战。此外,促进老年人骨修复的有效方法也很有限。本文基于介孔生物活性玻璃微球(MTBG)的介孔特性,成功制备了负载褪黑素的介孔生物活性玻璃微球。通过持续释放褪黑素和生物活性离子来增强线粒体功能,从而显著加速了老年大鼠骨缺损的修复。MTBG 通过清除过量的活性氧(ROS)、稳定线粒体膜电位(ΔΨm)和增加 ATP 合成,有效地使衰老的骨髓间充质干细胞(BMSCs)恢复活力。对其基本机制的分析表明,隧道纳米管(TNTs)的形成促进了线粒体的细胞间转移,从而导致线粒体功能的恢复。这项研究为设计适用于老年人的新型生物材料以及老年骨再生的生物机制提供了重要启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
4.90%
发文量
303
审稿时长
30 days
期刊介绍: Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信