Ryan Humble, Zhe Zhang, Finn O’Shea, Eric Darve and Daniel Ratner
{"title":"Coincident learning for unsupervised anomaly detection of scientific instruments","authors":"Ryan Humble, Zhe Zhang, Finn O’Shea, Eric Darve and Daniel Ratner","doi":"10.1088/2632-2153/ad64a6","DOIUrl":null,"url":null,"abstract":"Anomaly detection is an important task for complex scientific experiments and other complex systems (e.g. industrial facilities, manufacturing), where failures in a sub-system can lead to lost data, poor performance, or even damage to components. While scientific facilities generate a wealth of data, labeled anomalies may be rare (or even nonexistent), and expensive to acquire. Unsupervised approaches are therefore common and typically search for anomalies either by distance or density of examples in the input feature space (or some associated low-dimensional representation). This paper presents a novel approach called coincident learning for anomaly detection (CoAD), which is specifically designed for multi-modal tasks and identifies anomalies based on coincident behavior across two different slices of the feature space. We define an unsupervised metric, , out of analogy to the supervised classification Fβ statistic. CoAD uses to train an anomaly detection algorithm on unlabeled data, based on the expectation that anomalous behavior in one feature slice is coincident with anomalous behavior in the other. The method is illustrated using a synthetic outlier data set and a MNIST-based image data set, and is compared to prior state-of-the-art on two real-world tasks: a metal milling data set and our motivating task of identifying RF station anomalies in a particle accelerator.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad64a6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Anomaly detection is an important task for complex scientific experiments and other complex systems (e.g. industrial facilities, manufacturing), where failures in a sub-system can lead to lost data, poor performance, or even damage to components. While scientific facilities generate a wealth of data, labeled anomalies may be rare (or even nonexistent), and expensive to acquire. Unsupervised approaches are therefore common and typically search for anomalies either by distance or density of examples in the input feature space (or some associated low-dimensional representation). This paper presents a novel approach called coincident learning for anomaly detection (CoAD), which is specifically designed for multi-modal tasks and identifies anomalies based on coincident behavior across two different slices of the feature space. We define an unsupervised metric, , out of analogy to the supervised classification Fβ statistic. CoAD uses to train an anomaly detection algorithm on unlabeled data, based on the expectation that anomalous behavior in one feature slice is coincident with anomalous behavior in the other. The method is illustrated using a synthetic outlier data set and a MNIST-based image data set, and is compared to prior state-of-the-art on two real-world tasks: a metal milling data set and our motivating task of identifying RF station anomalies in a particle accelerator.
期刊介绍:
Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.