Towards robust data-driven automated recovery of symbolic conservation laws from limited data

IF 6.3 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Tracey Oellerich and Maria Emelianenko
{"title":"Towards robust data-driven automated recovery of symbolic conservation laws from limited data","authors":"Tracey Oellerich and Maria Emelianenko","doi":"10.1088/2632-2153/ad6390","DOIUrl":null,"url":null,"abstract":"Conservation laws are an inherent feature in many systems modeling real world phenomena, in particular, those modeling biological and chemical systems. If the form of the underlying dynamical system is known, linear algebra and algebraic geometry methods can be used to identify the conservation laws. Our work focuses on using data-driven methods to identify the conservation law(s) in the absence of the knowledge of system dynamics. We develop a robust data-driven computational framework that automates the process of identifying the number and type of the conservation law(s) while keeping the amount of required data to a minimum. We demonstrate that due to relative stability of singular vectors to noise we are able to reconstruct correct conservation laws without the need for excessive parameter tuning. While we focus primarily on biological examples, the framework proposed herein is suitable for a variety of data science applications and can be coupled with other machine learning approaches.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad6390","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Conservation laws are an inherent feature in many systems modeling real world phenomena, in particular, those modeling biological and chemical systems. If the form of the underlying dynamical system is known, linear algebra and algebraic geometry methods can be used to identify the conservation laws. Our work focuses on using data-driven methods to identify the conservation law(s) in the absence of the knowledge of system dynamics. We develop a robust data-driven computational framework that automates the process of identifying the number and type of the conservation law(s) while keeping the amount of required data to a minimum. We demonstrate that due to relative stability of singular vectors to noise we are able to reconstruct correct conservation laws without the need for excessive parameter tuning. While we focus primarily on biological examples, the framework proposed herein is suitable for a variety of data science applications and can be coupled with other machine learning approaches.
从有限数据中实现稳健的数据驱动自动恢复符号守恒定律
守恒定律是许多模拟现实世界现象的系统,特别是模拟生物和化学系统的系统的固有特征。如果已知基本动态系统的形式,就可以使用线性代数和代数几何方法来识别守恒定律。我们的工作重点是在缺乏系统动力学知识的情况下,使用数据驱动方法来识别守恒定律。我们开发了一个稳健的数据驱动计算框架,可自动识别守恒定律的数量和类型,同时将所需数据量保持在最低水平。我们证明,由于奇异向量对噪声的相对稳定性,我们能够重建正确的守恒定律,而无需过多的参数调整。虽然我们主要关注生物实例,但本文提出的框架适用于各种数据科学应用,并可与其他机器学习方法相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine Learning Science and Technology
Machine Learning Science and Technology Computer Science-Artificial Intelligence
CiteScore
9.10
自引率
4.40%
发文量
86
审稿时长
5 weeks
期刊介绍: Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信