Molecular relaxation by reverse diffusion with time step prediction

IF 6.3 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Khaled Kahouli, Stefaan Simon Pierre Hessmann, Klaus-Robert Müller, Shinichi Nakajima, Stefan Gugler and Niklas Wolf Andreas Gebauer
{"title":"Molecular relaxation by reverse diffusion with time step prediction","authors":"Khaled Kahouli, Stefaan Simon Pierre Hessmann, Klaus-Robert Müller, Shinichi Nakajima, Stefan Gugler and Niklas Wolf Andreas Gebauer","doi":"10.1088/2632-2153/ad652c","DOIUrl":null,"url":null,"abstract":"Molecular relaxation, finding the equilibrium state of a non-equilibrium structure, is an essential component of computational chemistry to understand reactivity. Classical force field (FF) methods often rely on insufficient local energy minimization, while neural network FF models require large labeled datasets encompassing both equilibrium and non-equilibrium structures. As a remedy, we propose MoreRed, molecular relaxation by reverse diffusion, a conceptually novel and purely statistical approach where non-equilibrium structures are treated as noisy instances of their corresponding equilibrium states. To enable the denoising of arbitrarily noisy inputs via a generative diffusion model, we further introduce a novel diffusion time step predictor. Notably, MoreRed learns a simpler pseudo potential energy surface (PES) instead of the complex physical PES. It is trained on a significantly smaller, and thus computationally cheaper, dataset consisting of solely unlabeled equilibrium structures, avoiding the computation of non-equilibrium structures altogether. We compare MoreRed to classical FFs, equivariant neural network FFs trained on a large dataset of equilibrium and non-equilibrium data, as well as a semi-empirical tight-binding model. To assess this quantitatively, we evaluate the root-mean-square deviation between the found equilibrium structures and the reference equilibrium structures as well as their energies.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad652c","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular relaxation, finding the equilibrium state of a non-equilibrium structure, is an essential component of computational chemistry to understand reactivity. Classical force field (FF) methods often rely on insufficient local energy minimization, while neural network FF models require large labeled datasets encompassing both equilibrium and non-equilibrium structures. As a remedy, we propose MoreRed, molecular relaxation by reverse diffusion, a conceptually novel and purely statistical approach where non-equilibrium structures are treated as noisy instances of their corresponding equilibrium states. To enable the denoising of arbitrarily noisy inputs via a generative diffusion model, we further introduce a novel diffusion time step predictor. Notably, MoreRed learns a simpler pseudo potential energy surface (PES) instead of the complex physical PES. It is trained on a significantly smaller, and thus computationally cheaper, dataset consisting of solely unlabeled equilibrium structures, avoiding the computation of non-equilibrium structures altogether. We compare MoreRed to classical FFs, equivariant neural network FFs trained on a large dataset of equilibrium and non-equilibrium data, as well as a semi-empirical tight-binding model. To assess this quantitatively, we evaluate the root-mean-square deviation between the found equilibrium structures and the reference equilibrium structures as well as their energies.
反向扩散的分子弛豫与时间步长预测
分子弛豫,即寻找非平衡态结构的平衡状态,是计算化学理解反应性的重要组成部分。经典的力场(FF)方法通常依赖于不充分的局部能量最小化,而神经网络 FF 模型则需要包含平衡和非平衡结构的大型标记数据集。作为一种补救措施,我们提出了反向扩散分子弛豫方法(MoreRed),这是一种概念新颖的纯统计方法,将非平衡态结构视为其相应平衡态的噪声实例。为了通过生成扩散模型对任意噪声输入进行去噪处理,我们进一步引入了一种新型扩散时间步预测器。值得注意的是,MoreRed 学习的是更简单的伪势能面(PES),而不是复杂的物理势能面。它是在一个明显更小的数据集上进行训练的,因此计算成本更低,该数据集仅由未标记的平衡结构组成,完全避免了非平衡结构的计算。我们将 MoreRed 与经典 FF、在大量平衡和非平衡数据集上训练的等变神经网络 FF 以及半经验紧密结合模型进行了比较。为了定量评估这一点,我们评估了所发现的平衡结构与参考平衡结构之间的均方根偏差以及它们的能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine Learning Science and Technology
Machine Learning Science and Technology Computer Science-Artificial Intelligence
CiteScore
9.10
自引率
4.40%
发文量
86
审稿时长
5 weeks
期刊介绍: Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信