ML-EAT: A Multilevel Embedding Association Test for Interpretable and Transparent Social Science

Robert Wolfe, Alexis Hiniker, Bill Howe
{"title":"ML-EAT: A Multilevel Embedding Association Test for Interpretable and Transparent Social Science","authors":"Robert Wolfe, Alexis Hiniker, Bill Howe","doi":"arxiv-2408.01966","DOIUrl":null,"url":null,"abstract":"This research introduces the Multilevel Embedding Association Test (ML-EAT),\na method designed for interpretable and transparent measurement of intrinsic\nbias in language technologies. The ML-EAT addresses issues of ambiguity and\ndifficulty in interpreting the traditional EAT measurement by quantifying bias\nat three levels of increasing granularity: the differential association between\ntwo target concepts with two attribute concepts; the individual effect size of\neach target concept with two attribute concepts; and the association between\neach individual target concept and each individual attribute concept. Using the\nML-EAT, this research defines a taxonomy of EAT patterns describing the nine\npossible outcomes of an embedding association test, each of which is associated\nwith a unique EAT-Map, a novel four-quadrant visualization for interpreting the\nML-EAT. Empirical analysis of static and diachronic word embeddings, GPT-2\nlanguage models, and a CLIP language-and-image model shows that EAT patterns\nadd otherwise unobservable information about the component biases that make up\nan EAT; reveal the effects of prompting in zero-shot models; and can also\nidentify situations when cosine similarity is an ineffective metric, rendering\nan EAT unreliable. Our work contributes a method for rendering bias more\nobservable and interpretable, improving the transparency of computational\ninvestigations into human minds and societies.","PeriodicalId":501112,"journal":{"name":"arXiv - CS - Computers and Society","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computers and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research introduces the Multilevel Embedding Association Test (ML-EAT), a method designed for interpretable and transparent measurement of intrinsic bias in language technologies. The ML-EAT addresses issues of ambiguity and difficulty in interpreting the traditional EAT measurement by quantifying bias at three levels of increasing granularity: the differential association between two target concepts with two attribute concepts; the individual effect size of each target concept with two attribute concepts; and the association between each individual target concept and each individual attribute concept. Using the ML-EAT, this research defines a taxonomy of EAT patterns describing the nine possible outcomes of an embedding association test, each of which is associated with a unique EAT-Map, a novel four-quadrant visualization for interpreting the ML-EAT. Empirical analysis of static and diachronic word embeddings, GPT-2 language models, and a CLIP language-and-image model shows that EAT patterns add otherwise unobservable information about the component biases that make up an EAT; reveal the effects of prompting in zero-shot models; and can also identify situations when cosine similarity is an ineffective metric, rendering an EAT unreliable. Our work contributes a method for rendering bias more observable and interpretable, improving the transparency of computational investigations into human minds and societies.
ML-EAT:可解释和透明社会科学的多层次嵌入关联测试
本研究介绍了多层次嵌入关联测试(ML-EAT),这是一种旨在对语言技术中的内在偏差进行可解释和透明测量的方法。ML-EAT 解决了传统 EAT 测量中的模糊性和难以解释性问题,它在三个粒度增加的层次上量化偏差:两个目标概念与两个属性概念之间的差异关联;每个目标概念与两个属性概念之间的个体效应大小;以及每个个体目标概念与每个个体属性概念之间的关联。本研究利用嵌入关联检验定义了嵌入关联检验模式分类法,描述了嵌入关联检验的九种可能结果,每种结果都与独特的嵌入关联检验图(EAT-Map)相关联,这是一种用于解释嵌入关联检验的新颖的四象限可视化方法。对静态和非同步词嵌入、GPT-2 语言模型以及 CLIP 语言和图像模型的实证分析表明,EAT 模式增加了关于构成 EAT 的成分偏差的其他不可观察的信息;揭示了零点模型中提示的效果;还能识别余弦相似性是无效度量的情况,从而使 EAT 变得不可靠。我们的工作提供了一种方法,使偏差更易观察和解释,从而提高了对人类思维和社会进行计算调查的透明度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信