{"title":"Design and analysis of rigid-elastic coupling origami flashers with bistable characteristics","authors":"","doi":"10.1016/j.ijmecsci.2024.109602","DOIUrl":null,"url":null,"abstract":"<div><p>Origami flashers are frequently used in the design of deployable structures due to their large storage ratio and simple structure. However, origami flashers are not foldable without the flexible deformation of the structural components. On the other hand, conventional origami flashers could not be maintained in the deployed configuration with enough supporting stiffness because of the flexibility of the facets and creases, which limits their practical applications. By analyzing the mobility of the rigid origami flashers, we find that the origami flashers have a bistability-like property. Based on this, we propose a method to design rigid-elastic coupling origami flashers with bistable characteristics. The rigid-elastic coupling origami flashers consist of rigid facets, zero-stiffness creases, and elastic ropes. The bistable folding characteristics are analyzed by theoretical models, and demonstrated by numerical methods and experiments. Such bistable characteristics allow for the deployment of the origami with less energy consumption, while achieving greater supporting stiffness in the deployed configuration. The effect of different parameters on the dynamic performance is also investigated. A fabrication method of the novel system is proposed and verified by a physical prototype. The rigid-elastic coupling origami flashers facilitate their potential applications in space engineering.</p></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002074032400643X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Origami flashers are frequently used in the design of deployable structures due to their large storage ratio and simple structure. However, origami flashers are not foldable without the flexible deformation of the structural components. On the other hand, conventional origami flashers could not be maintained in the deployed configuration with enough supporting stiffness because of the flexibility of the facets and creases, which limits their practical applications. By analyzing the mobility of the rigid origami flashers, we find that the origami flashers have a bistability-like property. Based on this, we propose a method to design rigid-elastic coupling origami flashers with bistable characteristics. The rigid-elastic coupling origami flashers consist of rigid facets, zero-stiffness creases, and elastic ropes. The bistable folding characteristics are analyzed by theoretical models, and demonstrated by numerical methods and experiments. Such bistable characteristics allow for the deployment of the origami with less energy consumption, while achieving greater supporting stiffness in the deployed configuration. The effect of different parameters on the dynamic performance is also investigated. A fabrication method of the novel system is proposed and verified by a physical prototype. The rigid-elastic coupling origami flashers facilitate their potential applications in space engineering.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.