Global Existence for Long Wave Hopf Unstable Spatially Extended Systems with a Conservation Law

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nicole Gauss, Anna Logioti, Guido Schneider, Dominik Zimmermann
{"title":"Global Existence for Long Wave Hopf Unstable Spatially Extended Systems with a Conservation Law","authors":"Nicole Gauss, Anna Logioti, Guido Schneider, Dominik Zimmermann","doi":"10.1007/s10884-024-10380-9","DOIUrl":null,"url":null,"abstract":"<p>We are interested in reaction–diffusion systems, with a conservation law, exhibiting a Hopf bifurcation at the spatial wave number <span>\\( k = 0 \\)</span>. With the help of a multiple scaling perturbation ansatz a Ginzburg–Landau equation coupled to a scalar conservation law can be derived as an amplitude system for the approximate description of the dynamics of the original reaction–diffusion system near the first instability. We use the amplitude system to show the global existence of all solutions starting in a small neighborhood of the weakly unstable ground state for original systems posed on a large spatial interval with periodic boundary conditions.\n</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10884-024-10380-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We are interested in reaction–diffusion systems, with a conservation law, exhibiting a Hopf bifurcation at the spatial wave number \( k = 0 \). With the help of a multiple scaling perturbation ansatz a Ginzburg–Landau equation coupled to a scalar conservation law can be derived as an amplitude system for the approximate description of the dynamics of the original reaction–diffusion system near the first instability. We use the amplitude system to show the global existence of all solutions starting in a small neighborhood of the weakly unstable ground state for original systems posed on a large spatial interval with periodic boundary conditions.

Abstract Image

具有守恒定律的长波霍普夫不稳定空间扩展系统的全局存在性
我们对具有守恒定律的反应-扩散系统感兴趣,该系统在空间波数 \( k = 0 \)处出现霍普夫分岔。在多重缩放扰动解析的帮助下,一个与标量守恒定律耦合的金兹堡-朗道方程可以被推导为一个振幅系统,用于近似描述原始反应-扩散系统在第一个不稳定性附近的动力学。我们利用振幅系统证明,对于在大空间区间上具有周期性边界条件的原始系统,从弱不稳定基态的一个小邻域开始,所有解都是全局存在的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信