Quantitative Information Extraction from Humanitarian Documents

Daniele Liberatore, Kyriaki Kalimeri, Derya Sever, Yelena Mejova
{"title":"Quantitative Information Extraction from Humanitarian Documents","authors":"Daniele Liberatore, Kyriaki Kalimeri, Derya Sever, Yelena Mejova","doi":"arxiv-2408.04941","DOIUrl":null,"url":null,"abstract":"Humanitarian action is accompanied by a mass of reports, summaries, news, and\nother documents. To guide its activities, important information must be quickly\nextracted from such free-text resources. Quantities, such as the number of\npeople affected, amount of aid distributed, or the extent of infrastructure\ndamage, are central to emergency response and anticipatory action. In this\nwork, we contribute an annotated dataset for the humanitarian domain for the\nextraction of such quantitative information, along side its important context,\nincluding units it refers to, any modifiers, and the relevant event. Further,\nwe develop a custom Natural Language Processing pipeline to extract the\nquantities alongside their units, and evaluate it in comparison to baseline and\nrecent literature. The proposed model achieves a consistent improvement in the\nperformance, especially in the documents pertaining to the Dominican Republic\nand select African countries. We make the dataset and code available to the\nresearch community to continue the improvement of NLP tools for the\nhumanitarian domain.","PeriodicalId":501112,"journal":{"name":"arXiv - CS - Computers and Society","volume":"15 Suppl 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computers and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Humanitarian action is accompanied by a mass of reports, summaries, news, and other documents. To guide its activities, important information must be quickly extracted from such free-text resources. Quantities, such as the number of people affected, amount of aid distributed, or the extent of infrastructure damage, are central to emergency response and anticipatory action. In this work, we contribute an annotated dataset for the humanitarian domain for the extraction of such quantitative information, along side its important context, including units it refers to, any modifiers, and the relevant event. Further, we develop a custom Natural Language Processing pipeline to extract the quantities alongside their units, and evaluate it in comparison to baseline and recent literature. The proposed model achieves a consistent improvement in the performance, especially in the documents pertaining to the Dominican Republic and select African countries. We make the dataset and code available to the research community to continue the improvement of NLP tools for the humanitarian domain.
从人道主义文件中提取定量信息
人道主义行动伴随着大量的报告、摘要、新闻和其他文件。为了指导人道主义行动,必须从这些自由文本资源中快速提取重要信息。数量,如受灾人数、分发的援助数量或基础设施损坏程度,是应急响应和预测行动的核心。在这项工作中,我们为人道主义领域提供了一个带注释的数据集,用于提取此类定量信息及其重要的上下文,包括其所指的单位、任何修饰词以及相关事件。此外,我们还开发了一个定制的自然语言处理管道来提取数量及其单位,并将其与基线和最新文献进行对比评估。所提出的模型在性能上实现了持续改进,尤其是在与多米尼加共和国和部分非洲国家相关的文档中。我们向研究界提供了数据集和代码,以继续改进人道主义领域的 NLP 工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信