Maria Thereza Rocha Chaves, Teresa Raquel Lima Farias, Waleska Martins Eloi
{"title":"Comparative analysis of bioretention design strategies for urban runoff infiltration: a critical overview","authors":"Maria Thereza Rocha Chaves, Teresa Raquel Lima Farias, Waleska Martins Eloi","doi":"10.1016/j.ecoleng.2024.107352","DOIUrl":null,"url":null,"abstract":"<div><p>This systematic review article provides a comprehensive overview of the application of nature-based solutions, specifically rain gardens, as compensatory techniques for stormwater management in various locations worldwide. A total of 53 articles, published between 2008 and 2024, were selected to identify the most utilized and advanced approaches regarding the quantitative analysis of bioretention cells for stormwater storage and infiltration. Given that this is a relatively recent topic in the context of urban drainage, with over 65% of the research published in the last five years (2020–2024), an established consensus on best construction practices, ideal materials, and suitable vegetation selection has yet to be reached. The studies are predominantly focused on temperate regions, indicating a pressing need for future investigations, particularly in tropical regions where data availability is limited. The reviewed studies highlight that the performance of rain gardens is intrinsically linked to a variety of parameters, including the confluence ratio, rainfall regime, engineering soil media composition, infiltration rate, internal layer configuration, and vegetation selection. However, despite the lack of consensus on these aspects, the analyses indicate that the implementation of rain gardens can effectively contribute to stormwater retention in urban environments. This finding suggests that, although there are gaps in the detailed understanding of the mechanisms and optimal conditions for maximum performance, there is a solid foundation for the continued use and enhancement of this practice as an effective stormwater management strategy in urban areas.</p></div>","PeriodicalId":11490,"journal":{"name":"Ecological Engineering","volume":"207 ","pages":"Article 107352"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925857424001770","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This systematic review article provides a comprehensive overview of the application of nature-based solutions, specifically rain gardens, as compensatory techniques for stormwater management in various locations worldwide. A total of 53 articles, published between 2008 and 2024, were selected to identify the most utilized and advanced approaches regarding the quantitative analysis of bioretention cells for stormwater storage and infiltration. Given that this is a relatively recent topic in the context of urban drainage, with over 65% of the research published in the last five years (2020–2024), an established consensus on best construction practices, ideal materials, and suitable vegetation selection has yet to be reached. The studies are predominantly focused on temperate regions, indicating a pressing need for future investigations, particularly in tropical regions where data availability is limited. The reviewed studies highlight that the performance of rain gardens is intrinsically linked to a variety of parameters, including the confluence ratio, rainfall regime, engineering soil media composition, infiltration rate, internal layer configuration, and vegetation selection. However, despite the lack of consensus on these aspects, the analyses indicate that the implementation of rain gardens can effectively contribute to stormwater retention in urban environments. This finding suggests that, although there are gaps in the detailed understanding of the mechanisms and optimal conditions for maximum performance, there is a solid foundation for the continued use and enhancement of this practice as an effective stormwater management strategy in urban areas.
期刊介绍:
Ecological engineering has been defined as the design of ecosystems for the mutual benefit of humans and nature. The journal is meant for ecologists who, because of their research interests or occupation, are involved in designing, monitoring, or restoring ecosystems, and can serve as a bridge between ecologists and engineers.
Specific topics covered in the journal include: habitat reconstruction; ecotechnology; synthetic ecology; bioengineering; restoration ecology; ecology conservation; ecosystem rehabilitation; stream and river restoration; reclamation ecology; non-renewable resource conservation. Descriptions of specific applications of ecological engineering are acceptable only when situated within context of adding novelty to current research and emphasizing ecosystem restoration. We do not accept purely descriptive reports on ecosystem structures (such as vegetation surveys), purely physical assessment of materials that can be used for ecological restoration, small-model studies carried out in the laboratory or greenhouse with artificial (waste)water or crop studies, or case studies on conventional wastewater treatment and eutrophication that do not offer an ecosystem restoration approach within the paper.