Enhanced thermoelectric performance of Zr1−xNiSnTax half-Heusler alloys: a first-principle study

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Di Cao, Jiannong Cao
{"title":"Enhanced thermoelectric performance of Zr1−xNiSnTax half-Heusler alloys: a first-principle study","authors":"Di Cao,&nbsp;Jiannong Cao","doi":"10.1007/s10825-024-02207-z","DOIUrl":null,"url":null,"abstract":"<div><p>First-principles calculations combined with the Boltzmann transport theory were used to calculate the thermoelectric characteristics of Zr<sub>1−x</sub>NiSnTa<sub>x</sub> (x = 0, 1/4, 1/8, 1/12, 1/16, 1/24, 1/32, 1/36, 1/48, and 1/64). Ta-doped ZrNiSn can effectively improve the Seebeck coefficient of Zr<sub>1−x</sub>NiSnTa<sub>x</sub>, and it can also reduce its thermal conductivity. The maximum Seebeck coefficients of <i>p</i>-type and <i>n</i>-type Zr<sub>3/4</sub>NiSnTa<sub>1/4</sub> are 1117.58 μV/K and − 1059.47 μV/K, respectively. The maximum thermoelectric figure of merit of the <i>p</i>-type Zr<sub>3/4</sub>NiSnTa<sub>1/4</sub> thermoelectric material is 0.98, and the maximum thermoelectric figure of merit of the <i>n</i>-type Zr<sub>3/4</sub>NiSnTa<sub>1/4</sub> thermoelectric material is 0.97. The optimum thermoelectric figure of merit of Zr<sub>1−x</sub>NiSnTa<sub>x</sub> studied in this paper is higher than those of other studies. Our results demonstrate the good potential thermoelectric material of Zr<sub>1−x</sub>NiSnTa<sub>x</sub> for thermoelectric device applications.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 6","pages":"1209 - 1216"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02207-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

First-principles calculations combined with the Boltzmann transport theory were used to calculate the thermoelectric characteristics of Zr1−xNiSnTax (x = 0, 1/4, 1/8, 1/12, 1/16, 1/24, 1/32, 1/36, 1/48, and 1/64). Ta-doped ZrNiSn can effectively improve the Seebeck coefficient of Zr1−xNiSnTax, and it can also reduce its thermal conductivity. The maximum Seebeck coefficients of p-type and n-type Zr3/4NiSnTa1/4 are 1117.58 μV/K and − 1059.47 μV/K, respectively. The maximum thermoelectric figure of merit of the p-type Zr3/4NiSnTa1/4 thermoelectric material is 0.98, and the maximum thermoelectric figure of merit of the n-type Zr3/4NiSnTa1/4 thermoelectric material is 0.97. The optimum thermoelectric figure of merit of Zr1−xNiSnTax studied in this paper is higher than those of other studies. Our results demonstrate the good potential thermoelectric material of Zr1−xNiSnTax for thermoelectric device applications.

Abstract Image

Abstract Image

增强 Zr1-xNiSnTax 半赫斯勒合金的热电性能:第一原理研究
第一性原理计算结合玻尔兹曼输运理论计算了 Zr1-xNiSnTax (x = 0、1/4、1/8、1/12、1/16、1/24、1/32、1/36、1/48 和 1/64)的热电特性。掺杂 Ta 的 ZrNiSn 能有效提高 Zr1-xNiSnTax 的塞贝克系数,同时也能降低其热导率。p 型和 n 型 Zr3/4NiSnTa1/4 的最大塞贝克系数分别为 1117.58 μV/K 和 - 1059.47 μV/K。p 型 Zr3/4NiSnTa1/4 热电材料的最大热电系数为 0.98,n 型 Zr3/4NiSnTa1/4 热电材料的最大热电系数为 0.97。本文研究的 Zr1-xNiSnTax 最佳热电功勋值高于其他研究。我们的研究结果证明了 Zr1-xNiSnTax 热电材料在热电器件应用中的良好潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信