Bing He , Ying Ling , Zhixun Wang , Wenbin Gong , Zhe Wang , Yanting Liu , Tianzhu Zhou , Ting Xiong , Shuai Wang , Yonggang Wang , Qingwen Li , Qichong Zhang , Lei Wei
{"title":"Modulating selective interaction of NiOOH with Mg ions for high-performance aqueous batteries","authors":"Bing He , Ying Ling , Zhixun Wang , Wenbin Gong , Zhe Wang , Yanting Liu , Tianzhu Zhou , Ting Xiong , Shuai Wang , Yonggang Wang , Qingwen Li , Qichong Zhang , Lei Wei","doi":"10.1016/j.esci.2024.100293","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous Mg-ion batteries (AMIBs) featuring advantages of good safety, low cost, and high specific energy have been recognized as a promising energy-storage technology. However, the performance of AMIBs is consistently limited by sluggish diffusion kinetics and structural degradation of cathode materials arising from the strong electrostatic interactions between high-charge-density Mg<sup>2+</sup> and host materials. Here, layered-structured NiOOH, as traditional cathodes for alkaline batteries, is initially demonstrated to realize proton-assisted Mg-(de)intercalation chemistry with a high discharge platform (0.57 V) in neutral aqueous electrolytes. Benefiting from the unique core/shell structure, the resulting NiOOH/CNT cathodes achieve a high capacity of 122.5 mAh g<sup>−1</sup> and long cycle stability. Further theoretical calculations reveal that the binding energy of hydrated Mg<sup>2+</sup> is higher than that of Mg<sup>2+</sup> with NiOOH, resulting in that Mg<sup>2+</sup> is easily intercalated/de-intercalated into/from NiOOH. Benefiting from the freestanding design, the assembled fiber-shaped “rocking-chair” NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>//NiOOH AMIB shows a high energy density and satisfactory mechanical flexibility, which could be woven into a commercial fabric and power for fiber-shaped photoelectric sensors.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 5","pages":"Article 100293"},"PeriodicalIF":42.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141724000818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous Mg-ion batteries (AMIBs) featuring advantages of good safety, low cost, and high specific energy have been recognized as a promising energy-storage technology. However, the performance of AMIBs is consistently limited by sluggish diffusion kinetics and structural degradation of cathode materials arising from the strong electrostatic interactions between high-charge-density Mg2+ and host materials. Here, layered-structured NiOOH, as traditional cathodes for alkaline batteries, is initially demonstrated to realize proton-assisted Mg-(de)intercalation chemistry with a high discharge platform (0.57 V) in neutral aqueous electrolytes. Benefiting from the unique core/shell structure, the resulting NiOOH/CNT cathodes achieve a high capacity of 122.5 mAh g−1 and long cycle stability. Further theoretical calculations reveal that the binding energy of hydrated Mg2+ is higher than that of Mg2+ with NiOOH, resulting in that Mg2+ is easily intercalated/de-intercalated into/from NiOOH. Benefiting from the freestanding design, the assembled fiber-shaped “rocking-chair” NaTi2(PO4)3//NiOOH AMIB shows a high energy density and satisfactory mechanical flexibility, which could be woven into a commercial fabric and power for fiber-shaped photoelectric sensors.