Multiple perspectives of advanced design strategies and mechanism insights on enhancing the performance of zinc-ion supercapacitors

IF 20.3 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
{"title":"Multiple perspectives of advanced design strategies and mechanism insights on enhancing the performance of zinc-ion supercapacitors","authors":"","doi":"10.1016/j.ccr.2024.216097","DOIUrl":null,"url":null,"abstract":"<div><p>Zinc-ion supercapacitors (ZSCs), emerging as advanced electrochemical energy storage devices, boast of high safety, power density and energy density, as well as eco-friendliness. However, there are three key factors currently impeding the development of ZSCs, including capacity decay of unstable cathodes, hydrogen evolution in the electrolyte, and dendrite formation on the zinc anode surface. To effectively tackle these challenges, the design of ZSCs should be approached comprehensively, considering various aspects. This work delves into the fundamental principles, advantages, and prospective applications of ZSCs. Detailed strategies for enhancing ZSC performance is summarized and the underlying mechanisms is elucidated, focusing on boosting cathode capacity, inhibiting dendrite growth on the anode, and regulating the ion–solvent structure in the electrolyte. Furthermore, this work analyzes future research directions for ZSCs, aiming to expand the voltage window, enhance energy density, extend cycle life, explore various application scenarios, and more effectively address the evolving requirements of future energy storage. The comprehensive optimization of the ZSC design shows great potential for unleashing their capabilities as a high-performance energy storage technology, playing a crucial role in the domain of sustainable energy.</p></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":null,"pages":null},"PeriodicalIF":20.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854524004430","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc-ion supercapacitors (ZSCs), emerging as advanced electrochemical energy storage devices, boast of high safety, power density and energy density, as well as eco-friendliness. However, there are three key factors currently impeding the development of ZSCs, including capacity decay of unstable cathodes, hydrogen evolution in the electrolyte, and dendrite formation on the zinc anode surface. To effectively tackle these challenges, the design of ZSCs should be approached comprehensively, considering various aspects. This work delves into the fundamental principles, advantages, and prospective applications of ZSCs. Detailed strategies for enhancing ZSC performance is summarized and the underlying mechanisms is elucidated, focusing on boosting cathode capacity, inhibiting dendrite growth on the anode, and regulating the ion–solvent structure in the electrolyte. Furthermore, this work analyzes future research directions for ZSCs, aiming to expand the voltage window, enhance energy density, extend cycle life, explore various application scenarios, and more effectively address the evolving requirements of future energy storage. The comprehensive optimization of the ZSC design shows great potential for unleashing their capabilities as a high-performance energy storage technology, playing a crucial role in the domain of sustainable energy.

Abstract Image

提高锌离子超级电容器性能的先进设计策略和机理洞察的多重视角
锌离子超级电容器(ZSC)是新兴的先进电化学储能设备,具有高安全性、功率密度和能量密度以及生态友好性等优点。然而,目前有三个关键因素阻碍着 ZSC 的发展,包括不稳定阴极的容量衰减、电解液中的氢演化以及锌阳极表面枝晶的形成。为有效应对这些挑战,锌阳极氧化物电池的设计应综合考虑各方面因素。本研究深入探讨了锌阳极氧化物电池的基本原理、优势和应用前景。本文总结了提高 ZSC 性能的详细策略,并阐明了其基本机制,重点是提高阴极容量、抑制阳极上树枝状突起的生长以及调节电解液中的离子-溶剂结构。此外,该研究还分析了 ZSC 的未来研究方向,旨在扩大电压窗口、提高能量密度、延长循环寿命、探索各种应用场景,以及更有效地满足未来储能不断发展的要求。对 ZSC 设计的全面优化显示出其作为高性能储能技术的巨大潜力,在可持续能源领域发挥着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Coordination Chemistry Reviews
Coordination Chemistry Reviews 化学-无机化学与核化学
CiteScore
34.30
自引率
5.30%
发文量
457
审稿时长
54 days
期刊介绍: Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers. The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信