X. A. Naidenova, V. A. Parkhomenko, T. A. Martirova, A. V. Schukin
{"title":"Plausible Reasoning in an Algorithm for Generation of Good Classification Tests","authors":"X. A. Naidenova, V. A. Parkhomenko, T. A. Martirova, A. V. Schukin","doi":"10.1134/S0005117924030056","DOIUrl":null,"url":null,"abstract":"<p>The paper is devoted to the application of the plausible reasoning principles to symbolic machine learning. It seems for us that the applications are essential and necessary to improve the efficiency of ML algorithms. Many such algorithms produce and use rules in the form of implication. The generation of these rules with respect to the object classes is discussed. Our classification rules are specific. Their premise part, called good closed tests (GCTs), should cover as many objects as possible. One of the algorithms of GCTs generation called NIAGARA is presented. The algorithm is revisited and new procedures based on plausible reasoning are proposed. Their correctness is proved in propositions. We use the following rules: implication, interdiction, inductive rules of extending current sets of goal-oriented objects, rules of pruning the domain of searching solution. They allow to rise the effectiveness of algorithms.</p>","PeriodicalId":55411,"journal":{"name":"Automation and Remote Control","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation and Remote Control","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1134/S0005117924030056","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The paper is devoted to the application of the plausible reasoning principles to symbolic machine learning. It seems for us that the applications are essential and necessary to improve the efficiency of ML algorithms. Many such algorithms produce and use rules in the form of implication. The generation of these rules with respect to the object classes is discussed. Our classification rules are specific. Their premise part, called good closed tests (GCTs), should cover as many objects as possible. One of the algorithms of GCTs generation called NIAGARA is presented. The algorithm is revisited and new procedures based on plausible reasoning are proposed. Their correctness is proved in propositions. We use the following rules: implication, interdiction, inductive rules of extending current sets of goal-oriented objects, rules of pruning the domain of searching solution. They allow to rise the effectiveness of algorithms.
期刊介绍:
Automation and Remote Control is one of the first journals on control theory. The scope of the journal is control theory problems and applications. The journal publishes reviews, original articles, and short communications (deterministic, stochastic, adaptive, and robust formulations) and its applications (computer control, components and instruments, process control, social and economy control, etc.).