Equilibrium analysis in majority-based coalitional bargaining games

IF 1 4区 经济学 Q3 ECONOMICS
Guangjing Yang , Hao Sun
{"title":"Equilibrium analysis in majority-based coalitional bargaining games","authors":"Guangjing Yang ,&nbsp;Hao Sun","doi":"10.1016/j.jmateco.2024.103043","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces majority rule into coalitional bargaining games, adapting traditional models that rely on unanimous consent to more accurately mirror decision-making processes in real-world scenarios. We introduce a majority-based coalitional bargaining game (MBCBG), wherein coalitions pass proposals via majority votes. Our analysis of the stationary subgame perfect equilibrium (SSPE) not only establishes the necessary and sufficient conditions for SSPE strategy profiles but also confirms the existence of no-delay SSPEs in MBCBGs. We further delve into symmetric MBCBGs, delineating conditions that ensure equitable outcomes for homogeneous players. Furthermore, we provide a necessary and sufficient condition for the formation of the grand coalition under SSPEs. Additionally, we briefly explore how asymmetries in coalition values, proposal probabilities, and voting weights may influence both the dynamics of coalition formation and the expected equilibrium payoffs.</p></div>","PeriodicalId":50145,"journal":{"name":"Journal of Mathematical Economics","volume":"114 ","pages":"Article 103043"},"PeriodicalIF":1.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304406824001034","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces majority rule into coalitional bargaining games, adapting traditional models that rely on unanimous consent to more accurately mirror decision-making processes in real-world scenarios. We introduce a majority-based coalitional bargaining game (MBCBG), wherein coalitions pass proposals via majority votes. Our analysis of the stationary subgame perfect equilibrium (SSPE) not only establishes the necessary and sufficient conditions for SSPE strategy profiles but also confirms the existence of no-delay SSPEs in MBCBGs. We further delve into symmetric MBCBGs, delineating conditions that ensure equitable outcomes for homogeneous players. Furthermore, we provide a necessary and sufficient condition for the formation of the grand coalition under SSPEs. Additionally, we briefly explore how asymmetries in coalition values, proposal probabilities, and voting weights may influence both the dynamics of coalition formation and the expected equilibrium payoffs.

基于多数的联合讨价还价博弈中的均衡分析
本文将多数规则引入联盟讨价还价博弈,对依赖一致同意的传统模型进行了调整,以更准确地反映现实世界中的决策过程。我们引入了基于多数的联盟谈判博弈(MBCBG),联盟通过多数票通过提案。我们对静态子博弈完全均衡(SSPE)的分析不仅建立了 SSPE 策略剖面的必要条件和充分条件,还证实了 MBCBG 中无延迟 SSPE 的存在。我们进一步深入研究了对称 MBCBGs,划定了确保同质博弈者公平结果的条件。此外,我们还提供了在 SSPEs 下形成大联盟的必要条件和充分条件。此外,我们还简要探讨了联盟价值、提议概率和投票权重的不对称如何影响联盟形成的动态和预期均衡收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematical Economics
Journal of Mathematical Economics 管理科学-数学跨学科应用
CiteScore
1.70
自引率
7.70%
发文量
73
审稿时长
12.5 weeks
期刊介绍: The primary objective of the Journal is to provide a forum for work in economic theory which expresses economic ideas using formal mathematical reasoning. For work to add to this primary objective, it is not sufficient that the mathematical reasoning be new and correct. The work must have real economic content. The economic ideas must be interesting and important. These ideas may pertain to any field of economics or any school of economic thought.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信