Louis Pellicot, Nathalie Gruet, Jérôme Serp, Romain Malacarne, Sophie Bosonnet, Gaëtan Touze, Justyna Grzonka, Laure Martinelli
{"title":"Corrosion of a Nickel-Based Alumina-Forming Alloy in Molten NaCl–MgCl2 at 600 °C For the Development of a Molten Salt Nuclear Reactor","authors":"Louis Pellicot, Nathalie Gruet, Jérôme Serp, Romain Malacarne, Sophie Bosonnet, Gaëtan Touze, Justyna Grzonka, Laure Martinelli","doi":"10.1007/s11085-024-10264-9","DOIUrl":null,"url":null,"abstract":"<div><p>Molten chloride salts represent a very corrosive medium due to the amount of impurities they contain and that essentially comes from moisture. In this work, an industrial nickel-based alumina-forming alloy was preoxidized and corroded for 500 h in the NaCl–MgCl<sub>2</sub> eutectic. Electrochemistry and SEM analyses were used to prepare and analyse the corrosion test. Both the nickel-rich matrix and the alumina scale formed during preoxidation seemed to remain stable during the corrosion test contrary to some of the chromium carbides initially present in the columnar microstructure of the alloy. The use of X-ray tomography coupled with SEM observation revealed a preferential dissolution of the chromium carbides connected to the alloy/salt interface. X-ray tomography reveals a chromium carbides network enabling a deep molten salt infiltration within the alloy due to their preferential dissolution. Molten salt infiltration in the dissolved carbides network then leads to the oxidation of aluminium present in the alloy into a mixed MgAl<sub>2</sub>O<sub>4</sub> spinel. An oxoacido-basic reaction between the alumina scale formed at the alloy surface during preoxidation and MgO dissolved in the salt is also discussed. This work shows that nickel-based alumina-forming alloy present a realistic interest and that the microstructure of the alloy should be optimized in further work to enhance corrosion resistance.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 5","pages":"1041 - 1054"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11085-024-10264-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxidation of Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11085-024-10264-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Molten chloride salts represent a very corrosive medium due to the amount of impurities they contain and that essentially comes from moisture. In this work, an industrial nickel-based alumina-forming alloy was preoxidized and corroded for 500 h in the NaCl–MgCl2 eutectic. Electrochemistry and SEM analyses were used to prepare and analyse the corrosion test. Both the nickel-rich matrix and the alumina scale formed during preoxidation seemed to remain stable during the corrosion test contrary to some of the chromium carbides initially present in the columnar microstructure of the alloy. The use of X-ray tomography coupled with SEM observation revealed a preferential dissolution of the chromium carbides connected to the alloy/salt interface. X-ray tomography reveals a chromium carbides network enabling a deep molten salt infiltration within the alloy due to their preferential dissolution. Molten salt infiltration in the dissolved carbides network then leads to the oxidation of aluminium present in the alloy into a mixed MgAl2O4 spinel. An oxoacido-basic reaction between the alumina scale formed at the alloy surface during preoxidation and MgO dissolved in the salt is also discussed. This work shows that nickel-based alumina-forming alloy present a realistic interest and that the microstructure of the alloy should be optimized in further work to enhance corrosion resistance.
期刊介绍:
Oxidation of Metals is the premier source for the rapid dissemination of current research on all aspects of the science of gas-solid reactions at temperatures greater than about 400˚C, with primary focus on the high-temperature corrosion of bulk and coated systems. This authoritative bi-monthly publishes original scientific papers on kinetics, mechanisms, studies of scales from structural and morphological viewpoints, transport properties in scales, phase-boundary reactions, and much more. Articles may discuss both theoretical and experimental work related to gas-solid reactions at the surface or near-surface of a material exposed to elevated temperatures, including reactions with oxygen, nitrogen, sulfur, carbon and halogens. In addition, Oxidation of Metals publishes the results of frontier research concerned with deposit-induced attack. Review papers and short technical notes are encouraged.