Corrosion of Commercial Alloys in Ternary Carbonate Melt at 700 and 750 °C -Role of LiFeO2 Formation

IF 2.1 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Michael Spiegel, Patrik Schraven
{"title":"Corrosion of Commercial Alloys in Ternary Carbonate Melt at 700 and 750 °C -Role of LiFeO2 Formation","authors":"Michael Spiegel,&nbsp;Patrik Schraven","doi":"10.1007/s11085-024-10271-w","DOIUrl":null,"url":null,"abstract":"<div><p>The use of ternary molten carbonate mixtures Li<sub>2</sub>CO<sub>3</sub>—K<sub>2</sub>CO<sub>3</sub>—Na<sub>2</sub>CO<sub>3</sub> as heat transfer systems for the CSP technology as well as for heat storage for the chemical industry is widely under consideration. Experiments were carried out on austenitic steels DMV310N compared to nickel alloys in order to evaluate the corrosion properties in a molten 33 wt.% Li<sub>2</sub>CO<sub>3</sub>—33 wt.% K<sub>2</sub>CO<sub>3</sub>—34 wt.% Na<sub>2</sub>CO<sub>3</sub> mixture at 700 and 750 °C for 1000 h in closed crucibles. The austenitic steel DMV 310N passivates by the formation of an outer LiFeO<sub>2</sub> scale due to its iron content. If the iron content is low (&lt; 5 wt.%), as in Alloy 625 the alloy forms NiO, which obviously does not passivate the material and leads to a strong internal corrosive attack. It has been shown by short-term experiments (3, 30, 300 and 1000 h) that a quick formation of LiFeO<sub>2</sub> is necessary to avoid chromium dissolution and NiO formation. If LiFeO<sub>2</sub> is formed quickly, the growth of the internal corrosion front by chromium dissolution is retarded.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxidation of Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11085-024-10271-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The use of ternary molten carbonate mixtures Li2CO3—K2CO3—Na2CO3 as heat transfer systems for the CSP technology as well as for heat storage for the chemical industry is widely under consideration. Experiments were carried out on austenitic steels DMV310N compared to nickel alloys in order to evaluate the corrosion properties in a molten 33 wt.% Li2CO3—33 wt.% K2CO3—34 wt.% Na2CO3 mixture at 700 and 750 °C for 1000 h in closed crucibles. The austenitic steel DMV 310N passivates by the formation of an outer LiFeO2 scale due to its iron content. If the iron content is low (< 5 wt.%), as in Alloy 625 the alloy forms NiO, which obviously does not passivate the material and leads to a strong internal corrosive attack. It has been shown by short-term experiments (3, 30, 300 and 1000 h) that a quick formation of LiFeO2 is necessary to avoid chromium dissolution and NiO formation. If LiFeO2 is formed quickly, the growth of the internal corrosion front by chromium dissolution is retarded.

Abstract Image

Abstract Image

三元碳酸盐熔体在 700 和 750 °C 下对商用合金的腐蚀--形成 LiFeO2 的作用
将三元熔融碳酸盐混合物 Li2CO3-K2CO3-Na2CO3 用作 CSP 技术的传热系统以及化学工业的热储存,是目前广泛考虑的问题。为了评估 33 wt.% Li2CO3-33 wt.% K2CO3-34 wt.% Na2CO3 混合物在封闭坩埚中于 700 和 750 °C 温度下 1000 小时的腐蚀特性,对奥氏体钢 DMV310N 和镍合金进行了对比实验。奥氏体钢 DMV 310N 由于含铁而在外部形成钝化的 LiFeO2 鳞片。如果铁含量较低(5%),如合金 625,合金会形成氧化镍,这显然不能使材料钝化,反而会导致强烈的内部腐蚀。短期实验(3、30、300 和 1000 小时)表明,必须快速形成 LiFeO2 才能避免铬溶解和形成 NiO。如果快速形成 LiFeO2,铬溶解造成的内部腐蚀前沿的增长就会减慢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Oxidation of Metals
Oxidation of Metals 工程技术-冶金工程
CiteScore
5.10
自引率
9.10%
发文量
47
审稿时长
2.2 months
期刊介绍: Oxidation of Metals is the premier source for the rapid dissemination of current research on all aspects of the science of gas-solid reactions at temperatures greater than about 400˚C, with primary focus on the high-temperature corrosion of bulk and coated systems. This authoritative bi-monthly publishes original scientific papers on kinetics, mechanisms, studies of scales from structural and morphological viewpoints, transport properties in scales, phase-boundary reactions, and much more. Articles may discuss both theoretical and experimental work related to gas-solid reactions at the surface or near-surface of a material exposed to elevated temperatures, including reactions with oxygen, nitrogen, sulfur, carbon and halogens. In addition, Oxidation of Metals publishes the results of frontier research concerned with deposit-induced attack. Review papers and short technical notes are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信