Applying the Infrared Self-heating Method to a Comprehensive Fatigue Analysis of NiTi Shape Memory Alloys

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yongdan Zhou, Zihong Liu, Yahui Zhang, Xiaojun Gu, Jihong Zhu, Weihong Zhang
{"title":"Applying the Infrared Self-heating Method to a Comprehensive Fatigue Analysis of NiTi Shape Memory Alloys","authors":"Yongdan Zhou, Zihong Liu, Yahui Zhang, Xiaojun Gu, Jihong Zhu, Weihong Zhang","doi":"10.1007/s10338-024-00513-4","DOIUrl":null,"url":null,"abstract":"<p>This paper aims to seek expedited fatigue analysis methods using the infrared self-heating technique. The fatigue analysis of NiTi shape memory alloys is obtained through a hybrid approach: fatigue tests to failure yield relatively shorter fatigue lives, while determining the fatigue limit, normally involving extremely high cycles approaching 10<sup>7</sup> cycles, is directly achieved via self-heating tests. This methodology significantly reduces testing cycles, costing only a fraction of the several-thousand-cycle tests typically required. The validity of this approach is successfully demonstrated through fatigue testing of 18Ni steel: the entire S–N curve is examined using the traditional fatigue test until a life of up to 10<sup>7</sup> cycles, and the indicated fatigue limit agrees well with the one directly determined through the self-heating method. Subsequently, this developed approach is applied to the fatigue analysis of shape memory alloys under complex loading, enabling the concurrent estimation of the limits of phase transformation-dominated low-cycle fatigue and high-cycle fatigue in the elastic regime on a single specimen. The results obtained align well with other supporting evidence.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10338-024-00513-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to seek expedited fatigue analysis methods using the infrared self-heating technique. The fatigue analysis of NiTi shape memory alloys is obtained through a hybrid approach: fatigue tests to failure yield relatively shorter fatigue lives, while determining the fatigue limit, normally involving extremely high cycles approaching 107 cycles, is directly achieved via self-heating tests. This methodology significantly reduces testing cycles, costing only a fraction of the several-thousand-cycle tests typically required. The validity of this approach is successfully demonstrated through fatigue testing of 18Ni steel: the entire S–N curve is examined using the traditional fatigue test until a life of up to 107 cycles, and the indicated fatigue limit agrees well with the one directly determined through the self-heating method. Subsequently, this developed approach is applied to the fatigue analysis of shape memory alloys under complex loading, enabling the concurrent estimation of the limits of phase transformation-dominated low-cycle fatigue and high-cycle fatigue in the elastic regime on a single specimen. The results obtained align well with other supporting evidence.

Abstract Image

将红外自加热法应用于镍钛形状记忆合金的综合疲劳分析
本文旨在利用红外自加热技术寻求加快疲劳分析的方法。镍钛形状记忆合金的疲劳分析是通过一种混合方法进行的:疲劳破坏试验产生的疲劳寿命相对较短,而疲劳极限的确定通常涉及接近 107 个周期的极高循环,可通过自加热试验直接实现。这种方法大大减少了测试周期,成本仅为通常所需的数千次循环测试的一小部分。通过对 18Ni 钢进行疲劳测试,成功证明了这一方法的有效性:使用传统的疲劳测试方法对整个 S-N 曲线进行检测,直至达到 107 个循环的寿命,结果表明疲劳极限与通过自加热方法直接确定的疲劳极限非常吻合。随后,这种方法被应用于形状记忆合金在复杂载荷下的疲劳分析,从而能够在单个试样上同时估算以相变为主的低循环疲劳和弹性状态下的高循环疲劳极限。所获得的结果与其他支持性证据非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信