Si1−x−yGeySnx alloy formation by Sn ion implantation and flash lamp annealing

O. Steuer, M. Michailow, R. Hübner, K. Pyszniak, M. Turek, U. Kentsch, F. Ganss, M. M. Khan, L. Rebohle, S. Zhou, J. Knoch, M. Helm, G. Cuniberti, Y. M. Georgiev, S. Prucnal
{"title":"Si1−x−yGeySnx alloy formation by Sn ion implantation and flash lamp annealing","authors":"O. Steuer, M. Michailow, R. Hübner, K. Pyszniak, M. Turek, U. Kentsch, F. Ganss, M. M. Khan, L. Rebohle, S. Zhou, J. Knoch, M. Helm, G. Cuniberti, Y. M. Georgiev, S. Prucnal","doi":"10.1063/5.0220639","DOIUrl":null,"url":null,"abstract":"For many years, Si1−yGey alloys have been applied in the semiconductor industry due to the ability to adjust the performance of Si-based nanoelectronic devices. Following this alloying approach of group-IV semiconductors, adding tin (Sn) into the alloy appears as the obvious next step, which leads to additional possibilities for tailoring the material properties. Adding Sn enables effective bandgap and strain engineering and can improve the carrier mobilities, which makes Si1−x−yGeySnx alloys promising candidates for future opto- and nanoelectronics applications. The bottom-up approach for epitaxial growth of Si1−x−yGeySnx, e.g., by chemical vapor deposition and molecular beam epitaxy, allows tuning the material properties in the growth direction only; the realization of local material modifications to generate lateral heterostructures with such a bottom-up approach is extremely elaborate, since it would require the use of lithography, etching, and either selective epitaxy or epitaxy and chemical–mechanical polishing, giving rise to interface issues, non-planar substrates, etc. This article shows the possibility of fabricating Si1−x−yGeySnx alloys by Sn ion beam implantation into Si1−yGey layers followed by millisecond-range flash lamp annealing (FLA). The materials are investigated by Rutherford backscattering spectrometry, micro-Raman spectroscopy, x-ray diffraction, and transmission electron microscopy. The fabrication approach was adapted to ultra-thin Si1−yGey layers on silicon-on-insulator substrates. The results show the fabrication of single-crystalline Si1−x−yGeySnx with up to 2.3 at. % incorporated Sn without any indication of Sn segregation after recrystallization via FLA. Finally, we exhibit the possibility of implanting Sn locally in ultra-thin Si1−yGey films by masking unstructured regions on the chip, thus demonstrating the realization of vertical as well as lateral Si1−x−yGeySnx heterostructures by Sn ion implantation and flash lamp annealing.","PeriodicalId":502933,"journal":{"name":"Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0220639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For many years, Si1−yGey alloys have been applied in the semiconductor industry due to the ability to adjust the performance of Si-based nanoelectronic devices. Following this alloying approach of group-IV semiconductors, adding tin (Sn) into the alloy appears as the obvious next step, which leads to additional possibilities for tailoring the material properties. Adding Sn enables effective bandgap and strain engineering and can improve the carrier mobilities, which makes Si1−x−yGeySnx alloys promising candidates for future opto- and nanoelectronics applications. The bottom-up approach for epitaxial growth of Si1−x−yGeySnx, e.g., by chemical vapor deposition and molecular beam epitaxy, allows tuning the material properties in the growth direction only; the realization of local material modifications to generate lateral heterostructures with such a bottom-up approach is extremely elaborate, since it would require the use of lithography, etching, and either selective epitaxy or epitaxy and chemical–mechanical polishing, giving rise to interface issues, non-planar substrates, etc. This article shows the possibility of fabricating Si1−x−yGeySnx alloys by Sn ion beam implantation into Si1−yGey layers followed by millisecond-range flash lamp annealing (FLA). The materials are investigated by Rutherford backscattering spectrometry, micro-Raman spectroscopy, x-ray diffraction, and transmission electron microscopy. The fabrication approach was adapted to ultra-thin Si1−yGey layers on silicon-on-insulator substrates. The results show the fabrication of single-crystalline Si1−x−yGeySnx with up to 2.3 at. % incorporated Sn without any indication of Sn segregation after recrystallization via FLA. Finally, we exhibit the possibility of implanting Sn locally in ultra-thin Si1−yGey films by masking unstructured regions on the chip, thus demonstrating the realization of vertical as well as lateral Si1−x−yGeySnx heterostructures by Sn ion implantation and flash lamp annealing.
通过锡离子植入和闪灯退火形成 Si1-x-yGeySnx 合金
多年来,Si1-yGey 合金一直被应用于半导体行业,因为它能够调整硅基纳米电子器件的性能。按照这种第四族半导体合金化方法,在合金中添加锡(Sn)似乎是显而易见的下一步,这将为定制材料特性带来更多可能性。添加锡可实现有效的带隙和应变工程,并能提高载流子迁移率,这使得 Si1-x-yGeySnx 合金成为未来光电子和纳米电子应用的理想候选材料。通过化学气相沉积和分子束外延等自下而上的方法外延生长 Si1-x-yGeySnx,只能在生长方向上调整材料特性;而通过这种自下而上的方法实现局部材料改性以产生横向异质结构则极为复杂,因为这需要使用光刻、蚀刻、选择性外延或外延和化学机械抛光,从而产生界面问题和非平面基底等问题。本文展示了通过将锡离子束植入 Si1-yGey 层,然后进行毫秒级闪灯退火 (FLA) 来制造 Si1-x-yGeySnx 合金的可能性。这些材料通过卢瑟福反向散射光谱法、显微拉曼光谱法、X 射线衍射法和透射电子显微镜进行了研究。该制造方法适用于硅绝缘体衬底上的超薄 Si1-yGey 层。结果表明,制备出的单晶 Si1-x-yGeySnx 含锡量高达 2.3 at.%的单晶 Si1-x-yGeySnx,在通过 FLA 再结晶后没有出现任何锡偏析现象。最后,我们展示了通过掩蔽芯片上的非结构区域在超薄 Si1-yGey 薄膜中局部植入 Sn 的可能性,从而证明了通过 Sn 离子植入和闪灯退火实现垂直和横向 Si1-x-yGeySnx 异质结构的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信