Parameter Estimation of Breakthrough Curve Models in the Adsorption Process of H2S and CO2 Using the Markov Chain Monte Carlo Method

Haianny Beatriz Saraiva Lima, Ana Paula Souza de Sousa, W. B. D. Silva, Deibson Silva da Costa, E. C. Rodrigues, D. Estumano
{"title":"Parameter Estimation of Breakthrough Curve Models in the Adsorption Process of H2S and CO2 Using the Markov Chain Monte Carlo Method","authors":"Haianny Beatriz Saraiva Lima, Ana Paula Souza de Sousa, W. B. D. Silva, Deibson Silva da Costa, E. C. Rodrigues, D. Estumano","doi":"10.3390/app14166956","DOIUrl":null,"url":null,"abstract":"The increase in emissions of toxic gasses such as hydrogen sulfide (H2S) and carbon dioxide (CO2), resulting from growing urbanization and industrialization, has caused environmental and public health problems, making the implementation of air purification techniques through adsorption important. Thus, modeling the gas adsorption process is fundamental for good agreement with experimental data, employing mathematical models that enable the prediction of adsorption capacity. In this way, the present work aimed to compare different analytical breakthrough curve models (Thomas, Yoon–Nelson, Adams–Bohart, and Yan) for the adsorption of H2S and CO2 in fixed-bed columns, using experimental data from the literature, estimating the curve parameters through the Markov Chain Monte Carlo (MCMC) method with the Metropolis–Hastings algorithm, and ranking using the determination coefficients (R2 and R2Adjusted) and the Bayesian Information Criterion (BIC). The models showed better agreement using the estimation of maximum adsorption capacity (qs, N0) and the constants of each model (kth, kyn, and kba). In the adsorption of H2S, the Yan model stood out for its precision in estimating qs. For the adsorption of CO2, the Adams–Bohart model achieved better results with the estimation of N0, along with the Yoon–Nelson model. Furthermore, the use of this method allows for a reduction in computational effort compared to models based on complex differential equations.","PeriodicalId":502388,"journal":{"name":"Applied Sciences","volume":"57 51","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/app14166956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increase in emissions of toxic gasses such as hydrogen sulfide (H2S) and carbon dioxide (CO2), resulting from growing urbanization and industrialization, has caused environmental and public health problems, making the implementation of air purification techniques through adsorption important. Thus, modeling the gas adsorption process is fundamental for good agreement with experimental data, employing mathematical models that enable the prediction of adsorption capacity. In this way, the present work aimed to compare different analytical breakthrough curve models (Thomas, Yoon–Nelson, Adams–Bohart, and Yan) for the adsorption of H2S and CO2 in fixed-bed columns, using experimental data from the literature, estimating the curve parameters through the Markov Chain Monte Carlo (MCMC) method with the Metropolis–Hastings algorithm, and ranking using the determination coefficients (R2 and R2Adjusted) and the Bayesian Information Criterion (BIC). The models showed better agreement using the estimation of maximum adsorption capacity (qs, N0) and the constants of each model (kth, kyn, and kba). In the adsorption of H2S, the Yan model stood out for its precision in estimating qs. For the adsorption of CO2, the Adams–Bohart model achieved better results with the estimation of N0, along with the Yoon–Nelson model. Furthermore, the use of this method allows for a reduction in computational effort compared to models based on complex differential equations.
利用马尔可夫链蒙特卡洛法估算 H2S 和 CO2 吸附过程中突破曲线模型的参数
随着城市化和工业化的发展,硫化氢(H2S)和二氧化碳(CO2)等有毒气体的排放量不断增加,造成了环境和公共卫生问题,因此通过吸附技术来实现空气净化非常重要。因此,建立气体吸附过程模型是与实验数据保持良好一致的基础,采用数学模型可以预测吸附能力。因此,本研究利用文献中的实验数据,通过使用 Metropolis-Hastings 算法的马尔可夫链蒙特卡罗(MCMC)方法估计曲线参数,并使用确定系数(R2 和 R2Adjusted)和贝叶斯信息标准(BIC)进行排序,旨在比较固定床柱中吸附 H2S 和 CO2 的不同分析突破曲线模型(Thomas、Yoon-Nelson、Adams-Bohart 和 Yan)。通过估计最大吸附容量(qs、N0)和各模型的常数(kth、kyn 和 kba),各模型显示出较好的一致性。在吸附 H2S 时,Yan 模型在估计 qs 方面表现突出。对于 CO2 的吸附,Adams-Bohart 模型和 Yoon-Nelson 模型在估计 N0 方面取得了更好的结果。此外,与基于复杂微分方程的模型相比,使用这种方法可以减少计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信