{"title":"Impact of Aromatic Hydrocarbons on Emissions in a Custom-Built High-Pressure Combustor","authors":"Qiming Yu, B. Khandelwal","doi":"10.3390/en17163939","DOIUrl":null,"url":null,"abstract":"This study addresses the ongoing demand for increased efficiency and reduced emissions in turbomachinery combustion systems. A custom-built high-pressure combustor was designed and manufactured at the Low Carbon Combustion Centre (LCCC) of the University of Sheffield to investigate the impact of different aromatic hydrocarbons on emission rates. The research involved the comprehensive testing of Jet−A1 fuel and six aromatic species blends under high-pressure conditions of 10 bar. Based on the numerical CFD simulations by ANSYS 19.2, tangential dual air injection and a strategically placed V-shaped baffle plate were utilised to enhance fuel-air mixing and combustion stability. Experimental results demonstrated a negative correlation between combustion temperature and particulate matter (PM) emissions, with higher temperatures yielding lower PM emissions. Unburned hydrocarbons (UHCs), nitrogen oxides (NOx), carbon monoxide (CO), and carbon dioxide (CO2) emissions were also analysed. Ethylbenzene produced the highest UHC and CO emissions, while Indane exhibited the lowest levels of these pollutants, suggesting more complete combustion. O−xylene generated the highest NOx emissions, correlating with its higher combustion temperatures. This research enhances our understanding of gas turbine combustor design and the combustion behaviour of aromatic species, providing valuable insights for developing low-emission, high-efficiency gas turbine combustion technologies.","PeriodicalId":11557,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17163939","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses the ongoing demand for increased efficiency and reduced emissions in turbomachinery combustion systems. A custom-built high-pressure combustor was designed and manufactured at the Low Carbon Combustion Centre (LCCC) of the University of Sheffield to investigate the impact of different aromatic hydrocarbons on emission rates. The research involved the comprehensive testing of Jet−A1 fuel and six aromatic species blends under high-pressure conditions of 10 bar. Based on the numerical CFD simulations by ANSYS 19.2, tangential dual air injection and a strategically placed V-shaped baffle plate were utilised to enhance fuel-air mixing and combustion stability. Experimental results demonstrated a negative correlation between combustion temperature and particulate matter (PM) emissions, with higher temperatures yielding lower PM emissions. Unburned hydrocarbons (UHCs), nitrogen oxides (NOx), carbon monoxide (CO), and carbon dioxide (CO2) emissions were also analysed. Ethylbenzene produced the highest UHC and CO emissions, while Indane exhibited the lowest levels of these pollutants, suggesting more complete combustion. O−xylene generated the highest NOx emissions, correlating with its higher combustion temperatures. This research enhances our understanding of gas turbine combustor design and the combustion behaviour of aromatic species, providing valuable insights for developing low-emission, high-efficiency gas turbine combustion technologies.
期刊介绍:
Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.