Impact of Cobalt Addition on Single-Crystal Li1+x(Ni0.6Mn0.4)1-xO2 Cathode Material Performance

IF 3.1 4区 工程技术 Q2 ELECTROCHEMISTRY
Divya Rathore, Ning Zhang, Nafiseh Zaker, babak shalchiamirkhiz, Animesh Dutta, Hassan Tariq, Jeff R. Dahn
{"title":"Impact of Cobalt Addition on Single-Crystal Li1+x(Ni0.6Mn0.4)1-xO2 Cathode Material Performance","authors":"Divya Rathore, Ning Zhang, Nafiseh Zaker, babak shalchiamirkhiz, Animesh Dutta, Hassan Tariq, Jeff R. Dahn","doi":"10.1149/1945-7111/ad6cfc","DOIUrl":null,"url":null,"abstract":"\n Nickel and manganese-based layered oxides with a nickel content ranging from 50% to 80% are promising cathode materials for high-energy density lithium-ion batteries. However, these materials face challenges such as poor rate capability and limited cycling stability. The addition of excess lithium can mitigate these issues to some extent. This study examines the impact of incorporating small amounts of cobalt (5% or 10%) into these materials through an “all-dry” synthesis approach in stoichiometric and excess lithium-containing compositions. Results indicate that adding even these small amounts of cobalt decreases the cation mixing, improves crystallinity, reduces electronic resistance, and influences the morphology depending on whether nickel or manganese is replaced. The materials can accommodate up to 15% excess lithium without significant surface impurities. The addition of cobalt further enhances the rate capability of the material in excess lithium materials, but increasing cobalt content tends to compromise cycling stability when the materials are cycled up to 4.4 V. Materials in which 5% cobalt replaces nickel still exhibit superior rate capability and cycling performance compared to materials without cobalt. Therefore, incorporating small amounts of cobalt can positively impact the performance of Li1+x(Ni0.6Mn0.4)1-xO2 materials, offering a balance between improved rate capability and cycling stability.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad6cfc","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Nickel and manganese-based layered oxides with a nickel content ranging from 50% to 80% are promising cathode materials for high-energy density lithium-ion batteries. However, these materials face challenges such as poor rate capability and limited cycling stability. The addition of excess lithium can mitigate these issues to some extent. This study examines the impact of incorporating small amounts of cobalt (5% or 10%) into these materials through an “all-dry” synthesis approach in stoichiometric and excess lithium-containing compositions. Results indicate that adding even these small amounts of cobalt decreases the cation mixing, improves crystallinity, reduces electronic resistance, and influences the morphology depending on whether nickel or manganese is replaced. The materials can accommodate up to 15% excess lithium without significant surface impurities. The addition of cobalt further enhances the rate capability of the material in excess lithium materials, but increasing cobalt content tends to compromise cycling stability when the materials are cycled up to 4.4 V. Materials in which 5% cobalt replaces nickel still exhibit superior rate capability and cycling performance compared to materials without cobalt. Therefore, incorporating small amounts of cobalt can positively impact the performance of Li1+x(Ni0.6Mn0.4)1-xO2 materials, offering a balance between improved rate capability and cycling stability.
添加钴对单晶 Li1+x(Ni0.6Mn0.4)1-xO2 阴极材料性能的影响
镍和锰基层状氧化物的镍含量在 50%至 80%之间,是很有前途的高能量密度锂离子电池正极材料。然而,这些材料面临着速率能力差和循环稳定性有限等挑战。添加过量的锂可以在一定程度上缓解这些问题。本研究探讨了通过 "全干法 "合成方法在这些材料中加入少量钴(5% 或 10%)对化学计量和过量含锂成分的影响。结果表明,即使添加少量的钴,也会减少阳离子的混合、提高结晶度、降低电子电阻,并根据镍或锰的置换情况对形态产生影响。这些材料可以容纳多达 15%的过量锂,而不会产生明显的表面杂质。钴的加入进一步提高了过量锂材料的速率能力,但当材料的循环电压达到 4.4 V 时,钴含量的增加往往会影响循环稳定性。与不含钴的材料相比,用 5%钴代替镍的材料仍能表现出卓越的速率能力和循环性能。因此,加入少量钴可对 Li1+x(Ni0.6Mn0.4)1-xO2材料的性能产生积极影响,在提高速率能力和循环稳定性之间取得平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
12.80%
发文量
1369
审稿时长
1.5 months
期刊介绍: The Journal of The Electrochemical Society (JES) is the leader in the field of solid-state and electrochemical science and technology. This peer-reviewed journal publishes an average of 450 pages of 70 articles each month. Articles are posted online, with a monthly paper edition following electronic publication. The ECS membership benefits package includes access to the electronic edition of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信