{"title":"Design and Evaluation of a Novel Passive Shoulder Exoskeleton Based on a Variable Stiffness Mechanism Torque Generator for Industrial Applications","authors":"Yu Zhu, Felix Balser, Ming Shen, Shaoping Bai","doi":"10.3390/robotics13080120","DOIUrl":null,"url":null,"abstract":"Work-related musculoskeletal disorders (WMSDs) are a common occupational health problem in industries, and they can lead to decreased productivity and a reduced quality of life for workers. Exoskeletons, as an emerging technology, have the potential to solve this challenge by assisting arm movements and reducing muscle effort during load lifting tasks. In this paper, a passive exoskeleton based on a variable stiffness mechanism (VSM) torque generator is proposed and evaluated. This exoskeleton can provide adjustable torque curves and accommodate three degrees of freedom (DOFs) while remaining compact and lightweight. The workspace analysis shows that the workspace of this exoskeleton is sufficient for most industrial manual handling tasks. The experimental results demonstrate that the exoskeleton effectively reduces muscle effort during overhead reaching and load-lifting tasks, highlighting its effectiveness for repetitive tasks in industrial settings.","PeriodicalId":37568,"journal":{"name":"Robotics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/robotics13080120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Work-related musculoskeletal disorders (WMSDs) are a common occupational health problem in industries, and they can lead to decreased productivity and a reduced quality of life for workers. Exoskeletons, as an emerging technology, have the potential to solve this challenge by assisting arm movements and reducing muscle effort during load lifting tasks. In this paper, a passive exoskeleton based on a variable stiffness mechanism (VSM) torque generator is proposed and evaluated. This exoskeleton can provide adjustable torque curves and accommodate three degrees of freedom (DOFs) while remaining compact and lightweight. The workspace analysis shows that the workspace of this exoskeleton is sufficient for most industrial manual handling tasks. The experimental results demonstrate that the exoskeleton effectively reduces muscle effort during overhead reaching and load-lifting tasks, highlighting its effectiveness for repetitive tasks in industrial settings.
期刊介绍:
Robotics publishes original papers, technical reports, case studies, review papers and tutorials in all the aspects of robotics. Special Issues devoted to important topics in advanced robotics will be published from time to time. It particularly welcomes those emerging methodologies and techniques which bridge theoretical studies and applications and have significant potential for real-world applications. It provides a forum for information exchange between professionals, academicians and engineers who are working in the area of robotics, helping them to disseminate research findings and to learn from each other’s work. Suitable topics include, but are not limited to: -intelligent robotics, mechatronics, and biomimetics -novel and biologically-inspired robotics -modelling, identification and control of robotic systems -biomedical, rehabilitation and surgical robotics -exoskeletons, prosthetics and artificial organs -AI, neural networks and fuzzy logic in robotics -multimodality human-machine interaction -wireless sensor networks for robot navigation -multi-sensor data fusion and SLAM