E-GTN: Advanced Terrain Sensing Framework for Enhancing Intelligent Decision Making of Excavators

Qianyou Zhao, Le Gao, Duidi Wu, Xinyao Meng, Jin Qi, Jie Hu
{"title":"E-GTN: Advanced Terrain Sensing Framework for Enhancing Intelligent Decision Making of Excavators","authors":"Qianyou Zhao, Le Gao, Duidi Wu, Xinyao Meng, Jin Qi, Jie Hu","doi":"10.3390/app14166974","DOIUrl":null,"url":null,"abstract":"The shift towards autonomous excavators in construction and mining is a significant leap towards enhancing operational efficiency and ensuring worker safety. However, it presents challenges, such as the need for sophisticated decision making and environmental perception due to complex terrains and diverse conditions. Our study introduces the E-GTN framework, a novel approach tailored for autonomous excavation that leverages advanced multisensor fusion and a custom-designed convolutional neural network to address these challenges. Results demonstrate that GridNet effectively processes grid data, enabling the reinforcement learning algorithm to make informed decisions, thereby ensuring efficient and intelligent autonomous excavator performance. The study concludes that the E-GTN framework offers a robust solution for the challenges in unmanned excavator operations, providing a valuable platform for future advancements in the field.","PeriodicalId":502388,"journal":{"name":"Applied Sciences","volume":"8 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/app14166974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The shift towards autonomous excavators in construction and mining is a significant leap towards enhancing operational efficiency and ensuring worker safety. However, it presents challenges, such as the need for sophisticated decision making and environmental perception due to complex terrains and diverse conditions. Our study introduces the E-GTN framework, a novel approach tailored for autonomous excavation that leverages advanced multisensor fusion and a custom-designed convolutional neural network to address these challenges. Results demonstrate that GridNet effectively processes grid data, enabling the reinforcement learning algorithm to make informed decisions, thereby ensuring efficient and intelligent autonomous excavator performance. The study concludes that the E-GTN framework offers a robust solution for the challenges in unmanned excavator operations, providing a valuable platform for future advancements in the field.
E-GTN:用于增强挖掘机智能决策的先进地形传感框架
建筑和采矿业向自主挖掘机的转变是提高作业效率和确保工人安全的重大飞跃。然而,这也带来了挑战,例如,由于复杂的地形和多样的条件,需要复杂的决策和环境感知。我们的研究介绍了 E-GTN 框架,这是一种为自主挖掘量身定制的新方法,它利用先进的多传感器融合和定制设计的卷积神经网络来应对这些挑战。研究结果表明,GridNet 能够有效处理网格数据,使强化学习算法能够做出明智的决策,从而确保高效、智能的自主挖掘机性能。研究得出结论,E-GTN 框架为应对无人挖掘机操作中的挑战提供了一个强大的解决方案,为该领域未来的进步提供了一个宝贵的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信