Model Predictive Control for Formation Placement and Recovery of Traffic Cone Robots

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Zhiyong Li, Siyuan Chang, Min Ye, Shengjie Jiao
{"title":"Model Predictive Control for Formation Placement and Recovery of Traffic Cone Robots","authors":"Zhiyong Li, Siyuan Chang, Min Ye, Shengjie Jiao","doi":"10.3390/machines12080543","DOIUrl":null,"url":null,"abstract":"The challenge of effectively managing the formation and recovery of traffic cone robots (TCRs) is addressed by proposing a linear time-varying model predictive control (MPC) strategy. This problem involves coordinating multiple TCR formations within a work area to reach a target location, which is a huge challenge due to the complexity of dynamic coordination. Unlike conventional approaches, our method decomposes the formation control problem into two main components: leader TCR motion planning and follower formation tracking control. The motion planning component involves path and velocity planning to achieve leader trajectory control, which serves as a reference trajectory for the follower. The formation tracking task extends to formation control among multiple robots to achieve the traffic cone robot formation placement and recovery task. To address the TCR input limitation problem, input constraints are considered during the design process of the MPC controllers. The effectiveness and practicality of the proposed control strategy are validated through a series of numerical simulations and physical experiments with TCRs.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines12080543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The challenge of effectively managing the formation and recovery of traffic cone robots (TCRs) is addressed by proposing a linear time-varying model predictive control (MPC) strategy. This problem involves coordinating multiple TCR formations within a work area to reach a target location, which is a huge challenge due to the complexity of dynamic coordination. Unlike conventional approaches, our method decomposes the formation control problem into two main components: leader TCR motion planning and follower formation tracking control. The motion planning component involves path and velocity planning to achieve leader trajectory control, which serves as a reference trajectory for the follower. The formation tracking task extends to formation control among multiple robots to achieve the traffic cone robot formation placement and recovery task. To address the TCR input limitation problem, input constraints are considered during the design process of the MPC controllers. The effectiveness and practicality of the proposed control strategy are validated through a series of numerical simulations and physical experiments with TCRs.
交通锥机器人编队和恢复的模型预测控制
通过提出一种线性时变模型预测控制(MPC)策略,解决了有效管理交通锥机器人(TCR)编队和恢复的难题。这个问题涉及协调工作区域内的多个交通锥机器人编队到达目标位置,由于动态协调的复杂性,这是一个巨大的挑战。与传统方法不同,我们的方法将编队控制问题分解为两个主要部分:领队 TCR 运动规划和跟队编队跟踪控制。运动规划部分包括路径和速度规划,以实现领跑者轨迹控制,作为跟随者的参考轨迹。编队跟踪任务扩展到多个机器人之间的编队控制,以实现交通锥机器人编队放置和恢复任务。为解决交通管制输入限制问题,在 MPC 控制器的设计过程中考虑了输入约束。通过一系列数值模拟和 TCR 物理实验,验证了所提控制策略的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信