{"title":"On evaporation kinetics of multicomponent aerosols: Characteristic times and implications for volatility measurements","authors":"Andrey Khlystov","doi":"10.1080/02786826.2024.2385640","DOIUrl":null,"url":null,"abstract":"This paper presents a theoretical analysis of the evaporation of individual compounds from an aerosol in vapor-free conditions, demonstrating that the evaporation of mixture components is interconnected via the ratio of their characteristic times. These characteristic times are proportional to the square of the initial particle diameter and inversely proportional to the compound saturation vapor concentration (SVC). A single ordinary differential equation (ODE) can adequately describe the behavior of all mixture components. It is shown that the time needed to evaporate a specific compound fraction is primarily controlled by the compound’s characteristic time, with lesser influences from compound abundance in the mixture and the amount of less volatile material. Consequently, the relative abundance of indi-∗","PeriodicalId":7474,"journal":{"name":"Aerosol Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/02786826.2024.2385640","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a theoretical analysis of the evaporation of individual compounds from an aerosol in vapor-free conditions, demonstrating that the evaporation of mixture components is interconnected via the ratio of their characteristic times. These characteristic times are proportional to the square of the initial particle diameter and inversely proportional to the compound saturation vapor concentration (SVC). A single ordinary differential equation (ODE) can adequately describe the behavior of all mixture components. It is shown that the time needed to evaporate a specific compound fraction is primarily controlled by the compound’s characteristic time, with lesser influences from compound abundance in the mixture and the amount of less volatile material. Consequently, the relative abundance of indi-∗
期刊介绍:
Aerosol Science and Technology publishes theoretical, numerical and experimental investigations papers that advance knowledge of aerosols and facilitate its application. Articles on either basic or applied work are suitable. Examples of topics include instrumentation for the measurement of aerosol physical, optical, chemical and biological properties; aerosol dynamics and transport phenomena; numerical modeling; charging; nucleation; nanoparticles and nanotechnology; lung deposition and health effects; filtration; and aerosol generation.
Consistent with the criteria given above, papers that deal with the atmosphere, climate change, indoor and workplace environments, homeland security, pharmaceutical aerosols, combustion sources, aerosol synthesis reactors, and contamination control in semiconductor manufacturing will be considered. AST normally does not consider papers that describe routine measurements or models for aerosol air quality assessment.