{"title":"Data-Driven Prediction of Electrical Resistivity of Graphene Oxide/Cement Composites Considering the Effects of Specimen Size and Measurement Method","authors":"Runyang Chen, Chuang Feng, Jin-Liang Yang, Ziyang Hang, Yucheng Fan, Jinzhu Zhang","doi":"10.3390/buildings14082455","DOIUrl":null,"url":null,"abstract":"The prediction of electrical resistivity of graphene oxide (GO) reinforced cement composites (GORCCs) is essential to promote the application of the composites in civil engineering. Traditional experiments find it challenging to capture the effect of various features on the electrical resistivity of the GORCCs. In this work, machine learning (ML) techniques are employed to explore the complex nonlinear relationships between different influencing factors and the electrical resistivity of the GORCCs. A total of 171 datasets are utilized for training and testing the ML models. It is demonstrated that the applied ML models are effective and efficient. Apart from the water/cement ratio, correlation analysis shows that the electrical resistivity of the GORCCs is highly dependent on the specimen size and measurement method. Feature importance analysis shows that the dispersion of GO has a significant influence on the electrical resistivity. The extreme gradient boosting (XGB) model and the artificial neural network (ANN) model with 3 hidden layers are proven to have better predictions, as evidenced by higher R2 and lower root mean square error (RMSE). This work is envisioned to provide an effective and efficient way to identify the complex relationship between the material properties of the GORCCs and the various influencing factors.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14082455","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The prediction of electrical resistivity of graphene oxide (GO) reinforced cement composites (GORCCs) is essential to promote the application of the composites in civil engineering. Traditional experiments find it challenging to capture the effect of various features on the electrical resistivity of the GORCCs. In this work, machine learning (ML) techniques are employed to explore the complex nonlinear relationships between different influencing factors and the electrical resistivity of the GORCCs. A total of 171 datasets are utilized for training and testing the ML models. It is demonstrated that the applied ML models are effective and efficient. Apart from the water/cement ratio, correlation analysis shows that the electrical resistivity of the GORCCs is highly dependent on the specimen size and measurement method. Feature importance analysis shows that the dispersion of GO has a significant influence on the electrical resistivity. The extreme gradient boosting (XGB) model and the artificial neural network (ANN) model with 3 hidden layers are proven to have better predictions, as evidenced by higher R2 and lower root mean square error (RMSE). This work is envisioned to provide an effective and efficient way to identify the complex relationship between the material properties of the GORCCs and the various influencing factors.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates