Novel Landfill-Gas-to-Biomethane Route Using a Gas–Liquid Membrane Contactor for Decarbonation/Desulfurization and Selexol Absorption for Siloxane Removal

Processes Pub Date : 2024-08-08 DOI:10.3390/pr12081667
Guilherme Pereira da Cunha, José Luiz de de Medeiros, O. Q. F. Araújo
{"title":"Novel Landfill-Gas-to-Biomethane Route Using a Gas–Liquid Membrane Contactor for Decarbonation/Desulfurization and Selexol Absorption for Siloxane Removal","authors":"Guilherme Pereira da Cunha, José Luiz de de Medeiros, O. Q. F. Araújo","doi":"10.3390/pr12081667","DOIUrl":null,"url":null,"abstract":"A new landfill-gas-to-biomethane process prescribing decarbonation/desulfurization via gas–liquid membrane contactors and siloxane absorption using Selexol are presented in this study. Firstly, an extension for an HYSYS simulator was developed as a steady-state gas–liquid contactor model featuring: (a) a hollow-fiber membrane contactor for countercurrent/parallel contacts; (b) liquid/vapor mass/energy/momentum balances; (c) CO2/H2S/CH4/water fugacity-driven bidirectional transmembrane transfers; (d) temperature changes from transmembrane heat/mass transfers, phase change, and compressibility effects; and (e) external heat transfer. Secondly, contactor batteries using a countercurrent contact and parallel contact were simulated for selective landfill-gas decarbonation/desulfurization with water. Several separation methods were applied in the new process: (a) a water solvent gas–liquid contactor battery for adiabatic landfill-gas decarbonation/desulfurization; (b) water regeneration via high-pressure strippers, reducing the compression power for CO2 exportation; and (c) siloxane absorption with Selexol. The results show that the usual isothermal/isobaric contactor simplification is unrealistic at industrial scales. The process converts water-saturated landfill-gas (CH4 = 55.7%mol, CO2 = 40%mol, H2S = 150 ppm-mol, and Siloxanes = 2.14 ppm-mol) to biomethane with specifications of CH4MIN = 85%mol, CO2MAX = 3%mol, H2SMAX = 10 mg/Nm3, and SiloxanesMAX = 0.03 mg/Nm3. This work demonstrates that the new model can be validated with bench-scale literature data and used in industrial-scale batteries with the same hydrodynamics. Once calibrated, the model becomes economically valuable since it can: (i) predict industrial contactor battery performance under scale-up/scale-down conditions; (ii) detect process faults, membrane leakages, and wetting; and (iii) be used for process troubleshooting.","PeriodicalId":506892,"journal":{"name":"Processes","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/pr12081667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new landfill-gas-to-biomethane process prescribing decarbonation/desulfurization via gas–liquid membrane contactors and siloxane absorption using Selexol are presented in this study. Firstly, an extension for an HYSYS simulator was developed as a steady-state gas–liquid contactor model featuring: (a) a hollow-fiber membrane contactor for countercurrent/parallel contacts; (b) liquid/vapor mass/energy/momentum balances; (c) CO2/H2S/CH4/water fugacity-driven bidirectional transmembrane transfers; (d) temperature changes from transmembrane heat/mass transfers, phase change, and compressibility effects; and (e) external heat transfer. Secondly, contactor batteries using a countercurrent contact and parallel contact were simulated for selective landfill-gas decarbonation/desulfurization with water. Several separation methods were applied in the new process: (a) a water solvent gas–liquid contactor battery for adiabatic landfill-gas decarbonation/desulfurization; (b) water regeneration via high-pressure strippers, reducing the compression power for CO2 exportation; and (c) siloxane absorption with Selexol. The results show that the usual isothermal/isobaric contactor simplification is unrealistic at industrial scales. The process converts water-saturated landfill-gas (CH4 = 55.7%mol, CO2 = 40%mol, H2S = 150 ppm-mol, and Siloxanes = 2.14 ppm-mol) to biomethane with specifications of CH4MIN = 85%mol, CO2MAX = 3%mol, H2SMAX = 10 mg/Nm3, and SiloxanesMAX = 0.03 mg/Nm3. This work demonstrates that the new model can be validated with bench-scale literature data and used in industrial-scale batteries with the same hydrodynamics. Once calibrated, the model becomes economically valuable since it can: (i) predict industrial contactor battery performance under scale-up/scale-down conditions; (ii) detect process faults, membrane leakages, and wetting; and (iii) be used for process troubleshooting.
利用气液膜接触器脱碳/脱硫和 Selexol 吸收法脱除硅氧烷的新型垃圾填埋气制生物甲烷路线
本研究介绍了一种新的垃圾填埋气制生物甲烷工艺,该工艺规定通过气液膜接触器进行脱碳/脱硫,并使用 Selexol 进行硅氧烷吸收。首先,对 HYSYS 模拟器进行了扩展,开发了稳态气液接触器模型,其特点包括:(a) 用于逆流/平行接触的中空纤维膜接触器;(b) 液体/蒸汽质量/能量/动量平衡;(c) CO2/H2S/CH4/ 水逸散驱动的双向跨膜传质;(d) 跨膜传热/传质、相变和可压缩性效应引起的温度变化;以及 (e) 外部传热。其次,模拟了使用逆流接触和平行接触的接触器电池,用于垃圾填埋场气体的选择性脱碳/水脱硫。在新工艺中应用了几种分离方法:(a) 用于绝热垃圾填埋气脱碳/脱硫的水溶剂气液接触电池;(b) 通过高压汽提塔进行水再生,降低二氧化碳出口的压缩功率;(c) 使用 Selexol 进行硅氧烷吸收。结果表明,通常的等温/等压接触器简化在工业规模上是不现实的。该工艺将水饱和的垃圾填埋气(CH4 = 55.7%mol、CO2 = 40%mol、H2S = 150 ppm-mol 和硅氧烷 = 2.14 ppm-mol)转化为生物甲烷,其规格为 CH4MIN = 85%mol、CO2MAX = 3%mol、H2SMAX = 10 mg/Nm3 和硅氧烷MAX = 0.03 mg/Nm3。这项工作表明,新模型可以通过工作台规模的文献数据进行验证,并可用于具有相同流体力学的工业规模电池。校准后,该模型就具有了经济价值,因为它可以(i) 预测工业接触电池在扩大/缩小规模条件下的性能;(ii) 检测工艺故障、隔膜泄漏和润湿;(iii) 用于工艺故障排除。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信