Dynamics of a rocking bridge with two-sided poundings: A shake table investigation

IF 4.3 2区 工程技术 Q1 ENGINEERING, CIVIL
Ziqi Yang, Yang Lyu, Nawawi Chouw
{"title":"Dynamics of a rocking bridge with two-sided poundings: A shake table investigation","authors":"Ziqi Yang,&nbsp;Yang Lyu,&nbsp;Nawawi Chouw","doi":"10.1002/eqe.4205","DOIUrl":null,"url":null,"abstract":"<p>During strong earthquakes, the footing of a rockable bridge can temporarily and partially separate from the support. This rocking motion can activate rigid-like motions, reducing the deformation along the height of bridge piers and leading to smaller bending moments. As a result, rockable footing has been considered as a possibility for low-damage seismic design of structures. For bridges, the seismic-induced interaction between girders and adjacent abutments can change the structural dynamics due to the impeded girder movements. Although bridges with rockable footing, for example, the South Rangitikei viaduct, have been constructed, research on rockable bridges mainly focused on a single-segment case. Physical experiments on rockable bridges considering pounding are very limited. In this work, large-scale shake table experiments were performed on a two-segment bridge model with abutments. The cases without pounding and with girder-girder pounding alone were considered as references to help interpret the results. To investigate the consequence of footing rocking, the results of the rockable bridge on a rigid base were compared to that of the fixed-base bridge. The study reveals that compared to a fixed-base segment, the girder of a rockable segment is easier to move laterally. This change in dynamics due to rocking leads to less maximum pounding forces and thus reduces the damage potential to girders and abutments.</p>","PeriodicalId":11390,"journal":{"name":"Earthquake Engineering & Structural Dynamics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eqe.4205","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering & Structural Dynamics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eqe.4205","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

During strong earthquakes, the footing of a rockable bridge can temporarily and partially separate from the support. This rocking motion can activate rigid-like motions, reducing the deformation along the height of bridge piers and leading to smaller bending moments. As a result, rockable footing has been considered as a possibility for low-damage seismic design of structures. For bridges, the seismic-induced interaction between girders and adjacent abutments can change the structural dynamics due to the impeded girder movements. Although bridges with rockable footing, for example, the South Rangitikei viaduct, have been constructed, research on rockable bridges mainly focused on a single-segment case. Physical experiments on rockable bridges considering pounding are very limited. In this work, large-scale shake table experiments were performed on a two-segment bridge model with abutments. The cases without pounding and with girder-girder pounding alone were considered as references to help interpret the results. To investigate the consequence of footing rocking, the results of the rockable bridge on a rigid base were compared to that of the fixed-base bridge. The study reveals that compared to a fixed-base segment, the girder of a rockable segment is easier to move laterally. This change in dynamics due to rocking leads to less maximum pounding forces and thus reduces the damage potential to girders and abutments.

Abstract Image

双面重击摇桥的动力学:振动台研究
在强烈地震中,摇晃桥的桥基可能会暂时、部分地脱离支座。这种摇晃运动可以激活类似刚性的运动,减少桥墩沿高度方向的变形,并导致较小的弯矩。因此,岩基被认为是结构低破坏抗震设计的一种可能性。对于桥梁而言,地震引起的梁和相邻桥墩之间的相互作用会阻碍梁的运动,从而改变结构的动力学特性。虽然已经建造了具有可岩石基座的桥梁,例如南朗吉蒂凯高架桥,但对可岩石桥梁的研究主要集中在单段情况。考虑到重击的岩石桥梁物理实验非常有限。在这项工作中,对带有桥墩的两段桥梁模型进行了大规模振动台实验。为帮助解释实验结果,我们参考了无重击和仅有梁-梁重击的情况。为了研究基脚摇晃的后果,将刚性基座上可摇晃桥梁的结果与固定基座桥梁的结果进行了比较。研究显示,与固定基座桥段相比,可摇动桥段的大梁更容易横向移动。摇晃导致的动态变化会减小最大冲击力,从而降低对梁体和桥墩的潜在破坏力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earthquake Engineering & Structural Dynamics
Earthquake Engineering & Structural Dynamics 工程技术-工程:地质
CiteScore
7.20
自引率
13.30%
发文量
180
审稿时长
4.8 months
期刊介绍: Earthquake Engineering and Structural Dynamics provides a forum for the publication of papers on several aspects of engineering related to earthquakes. The problems in this field, and their solutions, are international in character and require knowledge of several traditional disciplines; the Journal will reflect this. Papers that may be relevant but do not emphasize earthquake engineering and related structural dynamics are not suitable for the Journal. Relevant topics include the following: ground motions for analysis and design geotechnical earthquake engineering probabilistic and deterministic methods of dynamic analysis experimental behaviour of structures seismic protective systems system identification risk assessment seismic code requirements methods for earthquake-resistant design and retrofit of structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信