A. Oldeman, M. Baatsen, A. S. von der Heydt, F. Selten, Henk A. Dijkstra
{"title":"Similar North Pacific variability despite suppressed El Niño variability in the warm mid-Pliocene climate","authors":"A. Oldeman, M. Baatsen, A. S. von der Heydt, F. Selten, Henk A. Dijkstra","doi":"10.5194/esd-15-1037-2024","DOIUrl":null,"url":null,"abstract":"Abstract. The mid-Pliocene is the most recent geological period with similar atmospheric CO2 concentration to the present day and similar surface temperatures to those projected at the end of this century for a moderate warming scenario. While not a perfect analogue, the mid-Pliocene can be used to study the functioning of the Earth system under similar forcings to a near future, especially regarding features in the climate system for which uncertainties exist in future projections. According to the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), the variability in the El Niño–Southern Oscillation (ENSO) was suppressed. In this study, we investigate how teleconnections of ENSO, specifically variability in the North Pacific atmosphere, respond to a suppressed ENSO according to PlioMIP2. The multi-model mean (MMM) shows a similar sea-level pressure (SLP) variability in the Aleutian Low (AL) in the mid-Pliocene and pre-industrial, but a per-model view reveals that the change in AL variability is related to the change in ENSO variability. Even though ENSO is suppressed, the teleconnection between ENSO sea-surface temperature (SST) anomalies, tropical precipitation, and North Pacific SLP anomalies is quite robust in the mid-Pliocene. We split AL variability in a part that is ENSO-related, and a residual variability which is related to internal stochastic variability, and find that the change in ENSO-related AL variability is strongly related to the change in ENSO variability itself, while the change in residual AL variability is unrelated to ENSO change. Since the internal atmospheric variability, which is the dominant forcing of the AL variability, is largely unchanged, we are able to understand that the AL variability is largely similar even though ENSO variability is suppressed. We find that the specific change in ENSO and AL variability depends on both the model equilibrium climate sensitivity and Earth system sensitivity. Finally, we present a perspective of (extra-)tropical Pacific variability in PlioMIP2, combining our results with literature findings on changes in the tropical mean climate and in the Pacific Decadal Oscillation (PDO).\n","PeriodicalId":48931,"journal":{"name":"Earth System Dynamics","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/esd-15-1037-2024","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. The mid-Pliocene is the most recent geological period with similar atmospheric CO2 concentration to the present day and similar surface temperatures to those projected at the end of this century for a moderate warming scenario. While not a perfect analogue, the mid-Pliocene can be used to study the functioning of the Earth system under similar forcings to a near future, especially regarding features in the climate system for which uncertainties exist in future projections. According to the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), the variability in the El Niño–Southern Oscillation (ENSO) was suppressed. In this study, we investigate how teleconnections of ENSO, specifically variability in the North Pacific atmosphere, respond to a suppressed ENSO according to PlioMIP2. The multi-model mean (MMM) shows a similar sea-level pressure (SLP) variability in the Aleutian Low (AL) in the mid-Pliocene and pre-industrial, but a per-model view reveals that the change in AL variability is related to the change in ENSO variability. Even though ENSO is suppressed, the teleconnection between ENSO sea-surface temperature (SST) anomalies, tropical precipitation, and North Pacific SLP anomalies is quite robust in the mid-Pliocene. We split AL variability in a part that is ENSO-related, and a residual variability which is related to internal stochastic variability, and find that the change in ENSO-related AL variability is strongly related to the change in ENSO variability itself, while the change in residual AL variability is unrelated to ENSO change. Since the internal atmospheric variability, which is the dominant forcing of the AL variability, is largely unchanged, we are able to understand that the AL variability is largely similar even though ENSO variability is suppressed. We find that the specific change in ENSO and AL variability depends on both the model equilibrium climate sensitivity and Earth system sensitivity. Finally, we present a perspective of (extra-)tropical Pacific variability in PlioMIP2, combining our results with literature findings on changes in the tropical mean climate and in the Pacific Decadal Oscillation (PDO).
期刊介绍:
Earth System Dynamics (ESD) is a not-for-profit international scientific journal committed to publishing and facilitating public discussion on interdisciplinary studies focusing on the Earth system and global change. The journal explores the intricate interactions among Earth's component systems, including the atmosphere, cryosphere, hydrosphere, oceans, pedosphere, lithosphere, and the influence of life and human activity. ESD welcomes contributions that delve into these interactions, their conceptualization, modeling, quantification, predictions of global change impacts, and their implications for Earth's habitability, humanity, and the future dynamics in the Anthropocene.