Rose Ane Pereira de Freitas, Ronald Buss de Souza, Rafael Afonso do Nascimento Reis, Luis Felipe Ferreira de Mendonça, Douglas da Silva Lindemann
{"title":"Satellite and in situ measurements of water vapour in the Brazil-Malvinas Confluence region","authors":"Rose Ane Pereira de Freitas, Ronald Buss de Souza, Rafael Afonso do Nascimento Reis, Luis Felipe Ferreira de Mendonça, Douglas da Silva Lindemann","doi":"10.1002/joc.8581","DOIUrl":null,"url":null,"abstract":"<p>This decade-long study from the INTERCONF programme addresses the data gap on ocean dynamics in the Southern Hemisphere. Focusing on the Brazil-Malvinas Confluence (BMC), we investigated the effect of temperature differences between the warm Brazil Current (BC) and the cold Malvinas Current (MC) on water vapour in the marine atmospheric boundary layer (MABL). Our results show a clear distinction: warmer BMC waters have 32% more water vapour (2 kg·m<sup>−2</sup> on average) compared to the MC. This highlights the direct link between ocean temperatures and atmospheric processes. Analysis of radiosonde data alongside satellite measurements showed better agreement over cooler waters with lower water vapour, leading to lower variability. This suggests less atmospheric turbulence and improved data compatibility, especially for satellite retrievals such as AIRS. Comparisons between reanalysis data (CFSR), satellite sounders (AIRS) and radiosondes (RS) showed consistent air temperature profiles, with average errors within the 10% threshold for satellite measurements. While capturing humidity variations remains a challenge, especially at high concentrations (indicated by higher mean squared error values), our study highlights the reliability of satellite data, particularly over the cold BMC region. This research highlights the importance of studying the interactions between ocean fronts and atmospheric phenomena for a complete picture of Southern Hemisphere ocean dynamics. It offers valuable insights for scientists across disciplines, providing a broad perspective on the results and their significance in different contexts.</p>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"44 12","pages":"4286-4305"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8581","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This decade-long study from the INTERCONF programme addresses the data gap on ocean dynamics in the Southern Hemisphere. Focusing on the Brazil-Malvinas Confluence (BMC), we investigated the effect of temperature differences between the warm Brazil Current (BC) and the cold Malvinas Current (MC) on water vapour in the marine atmospheric boundary layer (MABL). Our results show a clear distinction: warmer BMC waters have 32% more water vapour (2 kg·m−2 on average) compared to the MC. This highlights the direct link between ocean temperatures and atmospheric processes. Analysis of radiosonde data alongside satellite measurements showed better agreement over cooler waters with lower water vapour, leading to lower variability. This suggests less atmospheric turbulence and improved data compatibility, especially for satellite retrievals such as AIRS. Comparisons between reanalysis data (CFSR), satellite sounders (AIRS) and radiosondes (RS) showed consistent air temperature profiles, with average errors within the 10% threshold for satellite measurements. While capturing humidity variations remains a challenge, especially at high concentrations (indicated by higher mean squared error values), our study highlights the reliability of satellite data, particularly over the cold BMC region. This research highlights the importance of studying the interactions between ocean fronts and atmospheric phenomena for a complete picture of Southern Hemisphere ocean dynamics. It offers valuable insights for scientists across disciplines, providing a broad perspective on the results and their significance in different contexts.
期刊介绍:
The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions