Improving Charge Transport in Perovskite Solar Cells Using Solvent Additive Technique

IF 3.1 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Ahmed Hayali, M. Alkaisi
{"title":"Improving Charge Transport in Perovskite Solar Cells Using Solvent Additive Technique","authors":"Ahmed Hayali, M. Alkaisi","doi":"10.3390/inorganics12080214","DOIUrl":null,"url":null,"abstract":"Perovskite solar cells (PSCs) have demonstrated remarkable progress in performance in recent years, which has placed perovskite materials as the leading promising materials for future renewable energy applications. The solvent additive technique in perovskite composition is a simple but effective process used to improve the surface quality of the perovskite layers and to improve the performance and charge transport processes essential to the functions of PSCs. These additives can have a considerable effect on the topography, crystallinity, and surface properties of the perovskite active layer, ultimately influencing the stability of the PSCs. A “two-step spin coating” deposition method to make PSCs in ambient air laboratory conditions was employed. Acetonitrile (ACN) was conventionally utilized as a chemical additive to enhance the performance of PSCs. In this study, our film properties exhibited that the incorporation of ACN in the triple cation perovskite precursor led to the passivation of surface defects and a noticeable increase in the size of the crystal grains of the perovskite films, which led to enhanced stability of devices. The efficiency achieved for PSCs prepared with 10% ACN was 15.35%, which is 30% higher than devices prepared without ACN. In addition, devices prepared with ACN have shown a lower hysteresis index and more stable behavior compared to devices prepared without ACN. This work presents an easy, low-cost method for the fabrication of high performance PSCs prepared under ambient air laboratory conditions.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/inorganics12080214","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite solar cells (PSCs) have demonstrated remarkable progress in performance in recent years, which has placed perovskite materials as the leading promising materials for future renewable energy applications. The solvent additive technique in perovskite composition is a simple but effective process used to improve the surface quality of the perovskite layers and to improve the performance and charge transport processes essential to the functions of PSCs. These additives can have a considerable effect on the topography, crystallinity, and surface properties of the perovskite active layer, ultimately influencing the stability of the PSCs. A “two-step spin coating” deposition method to make PSCs in ambient air laboratory conditions was employed. Acetonitrile (ACN) was conventionally utilized as a chemical additive to enhance the performance of PSCs. In this study, our film properties exhibited that the incorporation of ACN in the triple cation perovskite precursor led to the passivation of surface defects and a noticeable increase in the size of the crystal grains of the perovskite films, which led to enhanced stability of devices. The efficiency achieved for PSCs prepared with 10% ACN was 15.35%, which is 30% higher than devices prepared without ACN. In addition, devices prepared with ACN have shown a lower hysteresis index and more stable behavior compared to devices prepared without ACN. This work presents an easy, low-cost method for the fabrication of high performance PSCs prepared under ambient air laboratory conditions.
利用溶剂添加技术改善 Perovskite 太阳能电池中的电荷传输
近年来,包晶体太阳能电池(PSCs)在性能方面取得了显著进步,这使得包晶体材料成为未来可再生能源应用中最有前途的材料。包晶石成分中的溶剂添加剂技术是一种简单而有效的工艺,可用于提高包晶石层的表面质量,改善性能和电荷传输过程,这对 PSC 的功能至关重要。这些添加剂可以对包晶石活性层的形貌、结晶度和表面特性产生相当大的影响,并最终影响 PSC 的稳定性。我们采用了 "两步旋涂 "沉积法,在实验室环境空气条件下制造 PSC。乙腈(ACN)通常用作化学添加剂,以提高 PSC 的性能。在这项研究中,我们的薄膜特性显示,在三阳离子包晶前驱体中加入 ACN 可钝化表面缺陷,并明显增加包晶薄膜晶粒的尺寸,从而提高器件的稳定性。使用 10% ACN 制备的 PSC 的效率为 15.35%,比不使用 ACN 制备的器件高出 30%。此外,与不使用 ACN 制备的器件相比,使用 ACN 制备的器件显示出更低的滞后指数和更稳定的行为。这项研究提出了一种在实验室环境空气条件下制备高性能 PSC 的简便、低成本方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganics
Inorganics Chemistry-Inorganic Chemistry
CiteScore
2.80
自引率
10.30%
发文量
193
审稿时长
6 weeks
期刊介绍: Inorganics is an open access journal that covers all aspects of inorganic chemistry research. Topics include but are not limited to: synthesis and characterization of inorganic compounds, complexes and materials structure and bonding in inorganic molecular and solid state compounds spectroscopic, magnetic, physical and chemical properties of inorganic compounds chemical reactivity, physical properties and applications of inorganic compounds and materials mechanisms of inorganic reactions organometallic compounds inorganic cluster chemistry heterogenous and homogeneous catalytic reactions promoted by inorganic compounds thermodynamics and kinetics of significant new and known inorganic compounds supramolecular systems and coordination polymers bio-inorganic chemistry and applications of inorganic compounds in biological systems and medicine environmental and sustainable energy applications of inorganic compounds and materials MD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信