{"title":"Statistical properties of ideal photons in a 2D dye-filled spherical cap cavity","authors":"Ze Cheng","doi":"10.1088/1674-1056/ad6cc9","DOIUrl":null,"url":null,"abstract":"\n Within the framework of quantum statistical mechanics, we have proposed an exact analytical solution to the problem of Bose-Einstein condensation (BEC) of harmonically trapped 2D ideal photons. We utilize this analytical solution to investigate the statistical properties of ideal photons in a 2D dye-filled spherical cap cavity. The results of numerical calculation of the analytical solution agree completely with the foregoing experimental results in the BEC of harmonically trapped 2D ideal photons. The analytical expressions of the critical temperature and the condensate fraction are derived in the thermodynamic limit. It is found that the 2D critical photon number is larger than the 1D critical photon number by two orders of magnitude. The spectral radiance of a 2D spherical cap cavity has a sharp peak at the frequency of the cavity cutoff when the photon number exceeds the critical value determined by a temperature.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"10 6","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad6cc9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Within the framework of quantum statistical mechanics, we have proposed an exact analytical solution to the problem of Bose-Einstein condensation (BEC) of harmonically trapped 2D ideal photons. We utilize this analytical solution to investigate the statistical properties of ideal photons in a 2D dye-filled spherical cap cavity. The results of numerical calculation of the analytical solution agree completely with the foregoing experimental results in the BEC of harmonically trapped 2D ideal photons. The analytical expressions of the critical temperature and the condensate fraction are derived in the thermodynamic limit. It is found that the 2D critical photon number is larger than the 1D critical photon number by two orders of magnitude. The spectral radiance of a 2D spherical cap cavity has a sharp peak at the frequency of the cavity cutoff when the photon number exceeds the critical value determined by a temperature.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.