Error estimates of exponential wave integrators for the Dirac equation in the massless and nonrelativistic regime

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ying Ma, Lizhen Chen
{"title":"Error estimates of exponential wave integrators for the Dirac equation in the massless and nonrelativistic regime","authors":"Ying Ma, Lizhen Chen","doi":"10.1002/num.23128","DOIUrl":null,"url":null,"abstract":"We present exponential wave integrator Fourier pseudospectral (EWI‐FP) methods and establish their error estimates of the fully discrete schemes for the Dirac equation in the massless and nonrelativistic regime. This regime involves a small dimensionless parameter where , and is inversely proportional to the speed of light. The solution exhibits highly oscillatory behavior in time and rapid wave propagation in space in this regime. Specifically, the time oscillations have a wavelength of , while the spatial oscillations have a wavelength of , with a wave speed of . We employ (symmetric) exponential wave integrators for temporal derivatives and Fourier spectral discretization for spatial derivatives. We rigorously derive the error bounds which explicitly depend on the mesh size , the time step and the small dimensionless parameter . The error estimates for the EWI‐FP methods demonstrate that their meshing strategy requirement (‐scalability) necessitates setting and when . Finally, some numerical examples are provided to validate the error bounds.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We present exponential wave integrator Fourier pseudospectral (EWI‐FP) methods and establish their error estimates of the fully discrete schemes for the Dirac equation in the massless and nonrelativistic regime. This regime involves a small dimensionless parameter where , and is inversely proportional to the speed of light. The solution exhibits highly oscillatory behavior in time and rapid wave propagation in space in this regime. Specifically, the time oscillations have a wavelength of , while the spatial oscillations have a wavelength of , with a wave speed of . We employ (symmetric) exponential wave integrators for temporal derivatives and Fourier spectral discretization for spatial derivatives. We rigorously derive the error bounds which explicitly depend on the mesh size , the time step and the small dimensionless parameter . The error estimates for the EWI‐FP methods demonstrate that their meshing strategy requirement (‐scalability) necessitates setting and when . Finally, some numerical examples are provided to validate the error bounds.
无质量和非相对论状态下狄拉克方程指数波积分器的误差估计
我们提出了指数波积分器傅立叶伪谱(EWI-FP)方法,并建立了它们在无质量和非相对论条件下对狄拉克方程全离散方案的误差估计。该机制涉及一个小的无量纲参数,其中 , 与光速成反比。在这种情况下,解在时间上表现出高度振荡行为,在空间上表现出快速波传播。具体来说,时间振荡的波长为 ,空间振荡的波长为 ,波速为 。 我们采用(对称)指数波积分器求时间导数,傅里叶谱离散法求空间导数。我们严格推导出误差边界,它明确取决于网格大小、时间步长和小的无量纲参数 。EWI-FP 方法的误差估计表明,其网格策略要求(-可扩展性)必须设置为......和......。最后,我们提供了一些数值示例来验证误差限值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信