D. Konovalov, I. Tolstorebrov, Yuhiro Iwamoto, H. Kobalava, Jacob Joseph Lamb, T. Eikevik
{"title":"Optimizing Low-Temperature Three-Circuit Evaporative Cooling System for an Electric Motor by Using Refrigerants","authors":"D. Konovalov, I. Tolstorebrov, Yuhiro Iwamoto, H. Kobalava, Jacob Joseph Lamb, T. Eikevik","doi":"10.3390/en17163942","DOIUrl":null,"url":null,"abstract":"This article presents modeling results and a comprehensive analysis of evaporative cooling systems designed for electric motors using the refrigerants R744 (trans-critical), R134a, R600a, and R290. This study aims to determine the most suitable refrigerant for use in a cooling system, optimize the system design, and calculate the maximum achievable motor power while adhering to specified temperature constraints. The modeling was validated by an experimental setup, which had the cooling system’s configuration featuring three circuits for motor housing, stator, and rotor cooling, respectively. The modeling of an evaporative system was used to present the cooling efficiency under varying loads and external temperature conditions. Mathematical modeling encompasses complex algorithms to simulate heat transfer phenomena, accounting for fluid dynamics and refrigeration cycle dynamics. The analyses revealed trends in winding temperature, rotor temperature, air temperature inside the motor, heat transfer coefficient, coefficient of performance (COP), and motor power across different operating conditions while using different cooling refrigerants. The maximal heat transfer coefficients were calculated for all the refrigerants for winding temperatures in the range from 32 to 82 °C, while air temperature and rotor temperatures were between 42 and 105 °C and 76 and 185 °C, respectively. Lowering the evaporation temperature of the coolant to −35 °C resulted in a significant decrease in the winding temperature to 15 °C, air temperature to 38 °C, and maximum rotor temperature to 118 °C at a motor power of 90 kW. Refrigerant R744 emerged as a promising option, offering high heat transfer coefficients and achieving high motor power within temperature limits. At the same time, the COP was lower when compared with other working fluids because of the high ambient temperature on the gas cooler side.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"47 19","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17163942","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents modeling results and a comprehensive analysis of evaporative cooling systems designed for electric motors using the refrigerants R744 (trans-critical), R134a, R600a, and R290. This study aims to determine the most suitable refrigerant for use in a cooling system, optimize the system design, and calculate the maximum achievable motor power while adhering to specified temperature constraints. The modeling was validated by an experimental setup, which had the cooling system’s configuration featuring three circuits for motor housing, stator, and rotor cooling, respectively. The modeling of an evaporative system was used to present the cooling efficiency under varying loads and external temperature conditions. Mathematical modeling encompasses complex algorithms to simulate heat transfer phenomena, accounting for fluid dynamics and refrigeration cycle dynamics. The analyses revealed trends in winding temperature, rotor temperature, air temperature inside the motor, heat transfer coefficient, coefficient of performance (COP), and motor power across different operating conditions while using different cooling refrigerants. The maximal heat transfer coefficients were calculated for all the refrigerants for winding temperatures in the range from 32 to 82 °C, while air temperature and rotor temperatures were between 42 and 105 °C and 76 and 185 °C, respectively. Lowering the evaporation temperature of the coolant to −35 °C resulted in a significant decrease in the winding temperature to 15 °C, air temperature to 38 °C, and maximum rotor temperature to 118 °C at a motor power of 90 kW. Refrigerant R744 emerged as a promising option, offering high heat transfer coefficients and achieving high motor power within temperature limits. At the same time, the COP was lower when compared with other working fluids because of the high ambient temperature on the gas cooler side.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico