{"title":"Testing Stimulus Equivalence in Transformer-Based Agents","authors":"Alexis Carrillo, Moisés Betancort","doi":"10.3390/fi16080289","DOIUrl":null,"url":null,"abstract":"This study investigates the ability of transformer-based models (TBMs) to form stimulus equivalence (SE) classes. We employ BERT and GPT as TBM agents in SE tasks, evaluating their performance across training structures (linear series, one-to-many and many-to-one) and relation types (select–reject, select-only). Our findings demonstrate that both models performed above mastery criterion in the baseline phase across all simulations (n = 12). However, they exhibit limited success in reflexivity, transitivity, and symmetry tests. Notably, both models achieved success only in the linear series structure with select–reject relations, failing in one-to-many and many-to-one structures, and all select-only conditions. These results suggest that TBM may be forming decision rules based on learned discriminations and reject relations, rather than responding according to equivalence class formation. The absence of reject relations appears to influence their responses and the occurrence of hallucinations. This research highlights the potential of SE simulations for: (a) comparative analysis of learning mechanisms, (b) explainability techniques for TBM decision-making, and (c) TBM bench-marking independent of pre-training or fine-tuning. Future investigations can explore upscaling simulations and utilize SE tasks within a reinforcement learning framework.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16080289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the ability of transformer-based models (TBMs) to form stimulus equivalence (SE) classes. We employ BERT and GPT as TBM agents in SE tasks, evaluating their performance across training structures (linear series, one-to-many and many-to-one) and relation types (select–reject, select-only). Our findings demonstrate that both models performed above mastery criterion in the baseline phase across all simulations (n = 12). However, they exhibit limited success in reflexivity, transitivity, and symmetry tests. Notably, both models achieved success only in the linear series structure with select–reject relations, failing in one-to-many and many-to-one structures, and all select-only conditions. These results suggest that TBM may be forming decision rules based on learned discriminations and reject relations, rather than responding according to equivalence class formation. The absence of reject relations appears to influence their responses and the occurrence of hallucinations. This research highlights the potential of SE simulations for: (a) comparative analysis of learning mechanisms, (b) explainability techniques for TBM decision-making, and (c) TBM bench-marking independent of pre-training or fine-tuning. Future investigations can explore upscaling simulations and utilize SE tasks within a reinforcement learning framework.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.