Modelling of granular materials at crushing-dominant stage

IF 5.6 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Yaolan Tang, Chunshun Zhang, Congying Li, Weiru Zhou, Junfeng Qian, Jian Zhao
{"title":"Modelling of granular materials at crushing-dominant stage","authors":"Yaolan Tang,&nbsp;Chunshun Zhang,&nbsp;Congying Li,&nbsp;Weiru Zhou,&nbsp;Junfeng Qian,&nbsp;Jian Zhao","doi":"10.1007/s11440-024-02383-z","DOIUrl":null,"url":null,"abstract":"<div><p>Granular crushing significantly changes mechanical behaviours, especially under elevated stress levels. Therefore, this study aims to develop a model to simulate the constitutive behaviours of granular materials at the crushing-dominant stage. Firstly, the contour of elastic potential energy is demonstrated and employed to derive the yield surface or function, acknowledging that the stored elastic energy dominates the breakage yield criterion. The versatility of the proposed yield function in accurately capturing the features of yield surfaces is verified with three cases, including Cam-clay models, test results, and an empirical yield function. Next, a hardening parameter, <i>H</i>, is formulated, considering the extent of crushing, <i>B</i>, and the void ratio, <i>e</i>, to reflect the expansion of the yield surface during hardening. The proposed simple hardening formulation favourably represents compression characteristics under elevated stress levels. Combining the above results of yield and hardening functions, a new elastic–plastic-crushing constitutive model is developed; the model’s capability to describe crushable granular material behaviours is validated against experimental counterparts.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"19 10","pages":"6535 - 6551"},"PeriodicalIF":5.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-024-02383-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Granular crushing significantly changes mechanical behaviours, especially under elevated stress levels. Therefore, this study aims to develop a model to simulate the constitutive behaviours of granular materials at the crushing-dominant stage. Firstly, the contour of elastic potential energy is demonstrated and employed to derive the yield surface or function, acknowledging that the stored elastic energy dominates the breakage yield criterion. The versatility of the proposed yield function in accurately capturing the features of yield surfaces is verified with three cases, including Cam-clay models, test results, and an empirical yield function. Next, a hardening parameter, H, is formulated, considering the extent of crushing, B, and the void ratio, e, to reflect the expansion of the yield surface during hardening. The proposed simple hardening formulation favourably represents compression characteristics under elevated stress levels. Combining the above results of yield and hardening functions, a new elastic–plastic-crushing constitutive model is developed; the model’s capability to describe crushable granular material behaviours is validated against experimental counterparts.

Abstract Image

Abstract Image

颗粒物料在破碎主导阶段的建模
颗粒破碎会极大地改变力学行为,尤其是在应力水平升高的情况下。因此,本研究旨在开发一种模型,以模拟颗粒材料在破碎主导阶段的构成行为。首先,研究证明了弹性势能的轮廓,并利用弹性势能推导出屈服面或屈服函数,承认储存的弹性能量主导着破碎屈服标准。提出的屈服函数在准确捕捉屈服面特征方面的多功能性通过三种情况得到了验证,包括 Cam-clay 模型、测试结果和经验屈服函数。接下来,考虑到破碎程度 B 和空隙率 e,制定了硬化参数 H,以反映硬化过程中屈服面的扩展。所提出的简单硬化公式很好地反映了高应力水平下的压缩特性。结合上述屈服和硬化函数的结果,建立了一个新的弹塑性-破碎构成模型;该模型描述可破碎颗粒材料行为的能力已通过实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Geotechnica
Acta Geotechnica ENGINEERING, GEOLOGICAL-
CiteScore
9.90
自引率
17.50%
发文量
297
审稿时长
4 months
期刊介绍: Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信