M. A. Ponce-Jara, Iván Pazmiño, Ángelo Moreira-Espinoza, Alfonso Gunsha-Morales, Catalina Rus-Casas
{"title":"Assessment of Single-Axis Solar Tracking System Efficiency in Equatorial Regions: A Case Study of Manta, Ecuador","authors":"M. A. Ponce-Jara, Iván Pazmiño, Ángelo Moreira-Espinoza, Alfonso Gunsha-Morales, Catalina Rus-Casas","doi":"10.3390/en17163946","DOIUrl":null,"url":null,"abstract":"Ecuador is grappling with a severe energy crisis, marked by frequent power outages. A recent study explored solar energy efficiency in the coastal city of Manta using an IoT real-time monitoring system to compare static photovoltaic (PV) systems with two single-axis solar tracking systems: one based on astronomical programming and the other using light-dependent resistor (LDR) sensors. Results showed that both tracking systems outperformed the static PV system, with net gains of 31.8% and 37.0%, respectively. The astronomical-programming-based system had a slight edge, operating its stepper motor intermittently for two minutes per hour, while the LDR system required continuous motor energization. The single-axis tracker using astronomical programming demonstrated notable advantages in energy efficiency and complexity, making it suitable for equatorial regions like Manta. The study also suggested potential further gains by adjusting solar positioning at shorter intervals, such as every 15 or 30 min. These findings enhance our understanding of solar tracking performance in equatorial environments, offering valuable insights for optimizing solar energy systems in regions with high solar radiation. By emphasizing customized solar tracking mechanisms, this research presents promising solutions to Ecuador’s energy crisis and advances sustainable energy practices.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"52 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17163946","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Ecuador is grappling with a severe energy crisis, marked by frequent power outages. A recent study explored solar energy efficiency in the coastal city of Manta using an IoT real-time monitoring system to compare static photovoltaic (PV) systems with two single-axis solar tracking systems: one based on astronomical programming and the other using light-dependent resistor (LDR) sensors. Results showed that both tracking systems outperformed the static PV system, with net gains of 31.8% and 37.0%, respectively. The astronomical-programming-based system had a slight edge, operating its stepper motor intermittently for two minutes per hour, while the LDR system required continuous motor energization. The single-axis tracker using astronomical programming demonstrated notable advantages in energy efficiency and complexity, making it suitable for equatorial regions like Manta. The study also suggested potential further gains by adjusting solar positioning at shorter intervals, such as every 15 or 30 min. These findings enhance our understanding of solar tracking performance in equatorial environments, offering valuable insights for optimizing solar energy systems in regions with high solar radiation. By emphasizing customized solar tracking mechanisms, this research presents promising solutions to Ecuador’s energy crisis and advances sustainable energy practices.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico