Analysis of the Feeding Behavior in a Bottom-Blown Lead-Smelting Furnace

IF 2.6 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Metals Pub Date : 2024-08-09 DOI:10.3390/met14080906
Kena Sun, Xiaowu Jie, Yonglu Zhang, Wei Gao, Derek O. Northwood, K. E. Waters, Hao Ma
{"title":"Analysis of the Feeding Behavior in a Bottom-Blown Lead-Smelting Furnace","authors":"Kena Sun, Xiaowu Jie, Yonglu Zhang, Wei Gao, Derek O. Northwood, K. E. Waters, Hao Ma","doi":"10.3390/met14080906","DOIUrl":null,"url":null,"abstract":"Computational fluid dynamics (CFD) software was used to simulate the feeding behavior in a bottom-blown lead-smelting furnace. The results show that when the particle size is less than 30 μm, 20% of the particles are suspended in the gas phase and do not enter the melt pool for smelting, thus resulting in material loss. When the particle size exceeds 75 μm, the particles settle in the metal layer. When the particle size is 40–60 μm, the particles are distributed in the slag and metal phases, and the material is uniformly distributed in the molten pool; additionally, the average velocity of the particles exceeds 1.4 m/s, the average temperature exceeds 960 K, and the particles exhibit better behavior within this range, thus rendering it the optimal range of particle sizes for feeding.","PeriodicalId":18461,"journal":{"name":"Metals","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/met14080906","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Computational fluid dynamics (CFD) software was used to simulate the feeding behavior in a bottom-blown lead-smelting furnace. The results show that when the particle size is less than 30 μm, 20% of the particles are suspended in the gas phase and do not enter the melt pool for smelting, thus resulting in material loss. When the particle size exceeds 75 μm, the particles settle in the metal layer. When the particle size is 40–60 μm, the particles are distributed in the slag and metal phases, and the material is uniformly distributed in the molten pool; additionally, the average velocity of the particles exceeds 1.4 m/s, the average temperature exceeds 960 K, and the particles exhibit better behavior within this range, thus rendering it the optimal range of particle sizes for feeding.
底吹熔铅炉中的进料行为分析
使用计算流体动力学(CFD)软件模拟了底吹铅熔炼炉中的进料行为。结果表明,当粒度小于 30 μm 时,20% 的颗粒悬浮在气相中,无法进入熔池进行熔炼,从而导致材料损耗。当粒度超过 75 μm 时,颗粒会沉降在金属层中。当粒度为 40-60 μm 时,颗粒分布在渣相和金属相中,材料均匀地分布在熔池中;此外,颗粒的平均速度超过 1.4 m/s,平均温度超过 960 K,颗粒在此范围内表现出更好的行为,因此是最佳的进料粒度范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metals
Metals MATERIALS SCIENCE, MULTIDISCIPLINARY-METALLURGY & METALLURGICAL ENGINEERING
CiteScore
4.90
自引率
13.80%
发文量
1832
审稿时长
1.5 months
期刊介绍: Metals (ISSN 2075-4701) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Metals provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of metals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信