Morphological characterization of concave particle based on convex decomposition

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Libing Du, Zirui Li, Xinrong Liu, Zhongping Yang
{"title":"Morphological characterization of concave particle based on convex decomposition","authors":"Libing Du, Zirui Li, Xinrong Liu, Zhongping Yang","doi":"10.1088/1361-6501/ad66fa","DOIUrl":null,"url":null,"abstract":"\n Particle morphology is an important factor affecting the mechanical properties of granular materials. However, it is difficult to quantify the morphology characteristics of the complex concave particle. Fortunately, complex particle can be segmented by convex decomposition, so a new shape index named convex decomposition coefficient (CDC) related to the number of segmentations is proposed. First, the pocket concavity was introduced to simplify the morphology hierarchically. Second, the cut weight linked to concavity was defined and convex decomposition was linearly optimised by maximizing the total cut weights. Third, the CDC was defined as the minimum block number where the block area ratio cumulatively exceeded 0.9 in descending order. Finally, the proposed index was used to quantify the particle morphology of coral sand. The results demonstrate that the CDC of coral sands mainly ranges from 2 to 6, with a positively skewed distribution. Furthermore, CDC correlates well with three shape indices: sphericity, particle size, and convexity. Larger CDC is associated with smaller sphericity, larger particle size, and smaller convexity. The index has certain scientific research value and practical significance.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad66fa","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Particle morphology is an important factor affecting the mechanical properties of granular materials. However, it is difficult to quantify the morphology characteristics of the complex concave particle. Fortunately, complex particle can be segmented by convex decomposition, so a new shape index named convex decomposition coefficient (CDC) related to the number of segmentations is proposed. First, the pocket concavity was introduced to simplify the morphology hierarchically. Second, the cut weight linked to concavity was defined and convex decomposition was linearly optimised by maximizing the total cut weights. Third, the CDC was defined as the minimum block number where the block area ratio cumulatively exceeded 0.9 in descending order. Finally, the proposed index was used to quantify the particle morphology of coral sand. The results demonstrate that the CDC of coral sands mainly ranges from 2 to 6, with a positively skewed distribution. Furthermore, CDC correlates well with three shape indices: sphericity, particle size, and convexity. Larger CDC is associated with smaller sphericity, larger particle size, and smaller convexity. The index has certain scientific research value and practical significance.
基于凸分解的凹颗粒形态表征
颗粒形态是影响颗粒材料力学性能的一个重要因素。然而,很难量化复杂凹颗粒的形态特征。幸运的是,复杂颗粒可以通过凸分解进行分割,因此提出了一种与分割次数相关的新形状指标,名为凸分解系数(CDC)。首先,引入口袋凹度来分层简化形态。其次,定义了与凹度相关的切割权重,并通过最大化总切割权重对凸分解进行线性优化。第三,将 CDC 定义为区块面积比累计超过 0.9 的最小区块数,并按降序排列。最后,提出的指数被用于量化珊瑚砂的颗粒形态。结果表明,珊瑚砂的 CDC 主要介于 2 到 6 之间,呈正偏分布。此外,CDC 与球度、粒度和凸度这三个形状指数有很好的相关性。CDC 越大,球度越小、粒度越大、凸度越小。该指数具有一定的科学研究价值和实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Measurement Science and Technology
Measurement Science and Technology 工程技术-工程:综合
CiteScore
4.30
自引率
16.70%
发文量
656
审稿时长
4.9 months
期刊介绍: Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented. Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信