Cátia S. Costa, A. Fernandes, Marta Munoz, M. R. Ribeiro, João M. Silva
{"title":"Analyzing HDPE Thermal and Catalytic Degradation in Hydrogen Atmosphere: A Model-Free Approach to the Activation Energy","authors":"Cátia S. Costa, A. Fernandes, Marta Munoz, M. R. Ribeiro, João M. Silva","doi":"10.3390/catal14080514","DOIUrl":null,"url":null,"abstract":"Despite the great interest in thermochemical processes for converting plastic waste into chemical feedstocks or fuels, their kinetics are still a less studied topic, especially under reductive conditions. In the present work, non-isothermal thermogravimetric analysis is used to study the thermal and catalytic conversion of HDPE promoted by parent and metal-based H-USY (15) and H-ZSM-5 (11.5) zeolites under a reducing hydrogen atmosphere. Additionally, the respective kinetic parameters (apparent activation energy, Ea, and frequency factor, A) were determined by applying two distinct model-free methods: Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS). The results showed that Ea of the thermal degradation of HDPE has an average value of 227 kJ/mol for both methods. In the presence of H-USY (15) and H-ZSM-5 (11.5) zeolites, Ea is strongly reduced and is highly dependent on conversion. In the case of H-USY (15), Ea varies from 78 to 157 kJ/mol for the KAS method and from 83 to 172 kJ/mol for the FWO method. Slightly lower values are reported for H-ZSM-5, with Ea values in the range of 53–122 kJ/mol for KAS and 61–107 kJ/mol for FWO. The presence and type of the metal source (Ni, Pt, or Pd) also affect the kinetic parameters of the reaction. The mean Ea values follow the order: Ni > Pt ≈ Pd for H-USY (15) or H-ZSM-5 zeolites. Accordingly, both parent and metal-based H-USY (15) and H-ZSM-5 zeolites can significantly reduce energy consumption in HDPE hydrocracking, thus promoting a more sustainable conversion of plastic waste.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"42 13","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/catal14080514","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the great interest in thermochemical processes for converting plastic waste into chemical feedstocks or fuels, their kinetics are still a less studied topic, especially under reductive conditions. In the present work, non-isothermal thermogravimetric analysis is used to study the thermal and catalytic conversion of HDPE promoted by parent and metal-based H-USY (15) and H-ZSM-5 (11.5) zeolites under a reducing hydrogen atmosphere. Additionally, the respective kinetic parameters (apparent activation energy, Ea, and frequency factor, A) were determined by applying two distinct model-free methods: Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS). The results showed that Ea of the thermal degradation of HDPE has an average value of 227 kJ/mol for both methods. In the presence of H-USY (15) and H-ZSM-5 (11.5) zeolites, Ea is strongly reduced and is highly dependent on conversion. In the case of H-USY (15), Ea varies from 78 to 157 kJ/mol for the KAS method and from 83 to 172 kJ/mol for the FWO method. Slightly lower values are reported for H-ZSM-5, with Ea values in the range of 53–122 kJ/mol for KAS and 61–107 kJ/mol for FWO. The presence and type of the metal source (Ni, Pt, or Pd) also affect the kinetic parameters of the reaction. The mean Ea values follow the order: Ni > Pt ≈ Pd for H-USY (15) or H-ZSM-5 zeolites. Accordingly, both parent and metal-based H-USY (15) and H-ZSM-5 zeolites can significantly reduce energy consumption in HDPE hydrocracking, thus promoting a more sustainable conversion of plastic waste.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico