Leela Sotsky, Angeline Castillo, Hugo Ramos, Eric Mitchko, Joshua Heuvel-Horwitz, Brian Bick, Devinder Mahajan, Stanislaus S. Wong
{"title":"Hydrogen Storage Properties of Metal-Modified Graphene Materials","authors":"Leela Sotsky, Angeline Castillo, Hugo Ramos, Eric Mitchko, Joshua Heuvel-Horwitz, Brian Bick, Devinder Mahajan, Stanislaus S. Wong","doi":"10.3390/en17163944","DOIUrl":null,"url":null,"abstract":"The absence of adequate methods for hydrogen storage has prevented the implementation of hydrogen as a major source of energy. Graphene-based materials have been considered for use as solid hydrogen storage, because of graphene’s high specific surface area. However, these materials alone do not meet the hydrogen storage standard of 6.5 wt.% set by the United States Department of Energy (DOE). They can, however, be easily modified through either decoration or doping to alter their chemical properties and increase their hydrogen storage capacity. This review is a compilation of various published reports on this topic and summarizes results from theoretical and experimental studies that explore the hydrogen storage properties of metal-modified graphene materials. The efficacy of alkali, alkaline earth metal, and transition metal decoration is examined. In addition, metal doping to further increase storage capacity is considered. Methods for hydrogen storage capacity measurements are later explained and the properties of an effective hydrogen storage material are summarized.","PeriodicalId":11557,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17163944","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The absence of adequate methods for hydrogen storage has prevented the implementation of hydrogen as a major source of energy. Graphene-based materials have been considered for use as solid hydrogen storage, because of graphene’s high specific surface area. However, these materials alone do not meet the hydrogen storage standard of 6.5 wt.% set by the United States Department of Energy (DOE). They can, however, be easily modified through either decoration or doping to alter their chemical properties and increase their hydrogen storage capacity. This review is a compilation of various published reports on this topic and summarizes results from theoretical and experimental studies that explore the hydrogen storage properties of metal-modified graphene materials. The efficacy of alkali, alkaline earth metal, and transition metal decoration is examined. In addition, metal doping to further increase storage capacity is considered. Methods for hydrogen storage capacity measurements are later explained and the properties of an effective hydrogen storage material are summarized.
期刊介绍:
Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.