A. Deller, J. von der Linden, S. Nißl, K. Michishio, N. Oshima, H. Higaki, E. Stenson
{"title":"Injection and confinement of positron bunches in a magnetic dipole trap","authors":"A. Deller, J. von der Linden, S. Nißl, K. Michishio, N. Oshima, H. Higaki, E. Stenson","doi":"10.1103/physreve.110.l023201","DOIUrl":null,"url":null,"abstract":"We demonstrate the efficient injection of a pulsed positron beam into a magnetic dipole trap and investigate the ensuing particle dynamics in the inhomogeneous electric and magnetic fields. Bunches of ∼105e+ were transferred from a buffer-gas trap into the field of a permanent magnet using a lossless E×B drift technique. The Δt≈0.2µs pulses were short compared to the toroidal rotation period, τd≈16µs, and e+ confinement time, τc≈0.6 s. The redistribution dynamics were studied by measuring the delayed γ-ray emission as the trap was emptied. This work extends the record for the number of low-energy positrons held in a dipole trap by two orders of magnitude and represents a significant advance toward the confinement of an electron-positron pair plasma.\n \n \n \n \n Published by the American Physical Society\n 2024\n \n \n","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"82 24","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.l023201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate the efficient injection of a pulsed positron beam into a magnetic dipole trap and investigate the ensuing particle dynamics in the inhomogeneous electric and magnetic fields. Bunches of ∼105e+ were transferred from a buffer-gas trap into the field of a permanent magnet using a lossless E×B drift technique. The Δt≈0.2µs pulses were short compared to the toroidal rotation period, τd≈16µs, and e+ confinement time, τc≈0.6 s. The redistribution dynamics were studied by measuring the delayed γ-ray emission as the trap was emptied. This work extends the record for the number of low-energy positrons held in a dipole trap by two orders of magnitude and represents a significant advance toward the confinement of an electron-positron pair plasma.
Published by the American Physical Society
2024
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.